Computer Architecture
Faculty of Computer Science & Engineering - HCMUT

Chapter 4: The Processor

BiNnh Tran-Thanh
thanhbinh@nhcmut.edu.vn &

"N\

This chapter contents

= The basic units in the CPU

= Functions of the major components in the CPU
= |nstruction execution at hardware level
* Performance and trace off among CPUs

This chapter outcomes

Students who complete this course will be
able to:

= Explain the structure of a computer system
and deeply understand how It works at the
hardware level.

& 8/15/2023 Faculty of Computer Science and Engineering

Introduction

* (CPU performance factors
* |nstruction count
= Determined by ISA and compiler
= (Pl and Cycle time
= Determined by CPU hardware

= We will examine two MIPS implementations
= A simplified version (single clock cycle)
= A more realistic pipelined version

= Simple subset, shows most aspects
= Memory reference: 1w, sw
= Arithmetic/logical: add, sub, and, or, slt
= (Control transfer:beq, j

BK, 8/15/2023 Faculty of Computer Science and Engineerin
¢ y gineering

BK

TP.HCM

The simplified processor.

8/15/2023

Add

Read
address

Instruction

[31-0]

Instruction
memory

Instruction [31-26]

Instruction [25-21]

Control

o

.—__>\

Add ALU

Hx:go

result

MemtoReg

AA AA Lt
IVICTTIIVVTILE

ALUSrc
RegWrite

Instruction [20-16]

) |—>

Instruction [15—111

Instruction [15-0]

Read

" |register 1

ead

Read datal

register 2

write ~ Read

Register data2

Write .
dataRegister

16 ‘G:h 32

4
x:ga

e

Instruction [5-0]

Address Read
data
Data
memor

Writ
dataw

—

xcgl—\

Faculty of Computer Science and Engineering

MIPS Instruction Execution Cycle

& 8/15/2023

Next Instruction

[Nstruction
Fetch

INstruction
Decode

Execution

Memory

Write
Back

1. Instruction Fetch:
= @Getinstruction from memory
= Address is in Program Counter (PC)
Register
2. Instruction Decode:

= Find out the operation required and
control signals

* @Getoperand(s) needed for operation

3. Execution:
= Perform the required operation

4. Memory:
= Access memory (load/store)
5. Write Back:

= Store the result of the operation

Faculty of Computer Science and Engineering

INnstruction Execution

= PC — instruction memory, fetch instruction
= Register numbers — register file, read registers

= Depending on instruction class

= Use ALU to calculate
= Arithmetic result
= Memory address for load/store
= Branch target address
= Access data memory for load/store

» PC <« target address or PC + 4

& 8/15/2023 Faculty of Computer Science and Engineering

CPU Overview

& 8/15/2023

Add

\

Y

PC

Address Instruction

Instruction
memory

Faculty of Computer Science and Engineering

y/

Data

Register#
Registers

Register#

*> Register#

[

Y

ki

ALU

Address

Data
memory

Data

Multiplexers

()
\,4\ >

\

Add . y

= Can'tjust join
wires together

= Use
multiplexers

.

memory *™ Register#

Data -
Register#
> PC [**| Address Instruction Registers ALU®™| Address
Register#
Instruction

TN
P Data |
_.7‘/' memory

Data

& 8/15/2023 Faculty of Computer Science and Engineering

Control

—
N
M <
u
v
o—>
4—>
el
» u
X |
N
ALU oper@n
Data |
>~ Register # . MemWwrite
| PC[®”| Address Instruction [$7] Registers ALU® ™| Address
L : M
Register # Zero
Instruction u mzra:]tgr
memory %™| Register # RegWriteT; X y
> Data
MemRead
\\
~| Control |
/

BK, 8/15/2023 Faculty of Computer Science and Engineering

Logic Design Basics

= |nformation encoded in binary
= | ow voltage = 0, High voltage = 1
* One wire per bit
= Multi-bit data encoded on multi-wire buses

= Combinational element
= Operate on data
= Qutput is a function of input

= State (sequential) elements
= Store information

BK, 8/15/2023 Faculty of Computer Science and Engineerin
¢ y gineering

11

Combinational Elements

- AND-gate = Adder
" Y =2A & B *Y = A + B
A
2:}3{ B_’B‘Y
= Multiplexer = Arithmetic/Logic Unit
"Y =S ? Il: IO "Y = F(A, B)
0 A
il Y gALU X
E’j N
S F

8/15/2023 Faculty of Computer Science and Engineering

Sequential Elements

= Register: stores data

IN a CIrcuit

= Uses a clock signal to determine when to update

the stored value

= Edge-triggered: update when Clk changes from 0

to 1

Clk

Clk— >

p—

s e

& 8/15/2023 Faculty of Computer Science and Engineering 13

Sequential Elements

= Register with write control
= Only updates on clock edge when write control
Input is 1
= Used when stored value Is required later

Clk

D _, L, 0 Write
Write — D
Clk— >

& 8/15/2023 Faculty of Computer Science and Engineering

14

Clocking Methodology

= Combinational logic transforms data during
clock cycles
= Between clock edges
* |nput from state elements, output to state element
= | ongest delay determines clock period

State State
State
Element Element >
Element
1 2
A

Clock cycle

& 8/15/2023 Faculty of Computer Science and Engineering

Building a Datapath

= Datapath

= Flements that process data and addresses In the
CPU

= Registers, ALUS, mux’s, memorles, ...

= We will build a MIPS data-path incrementally
= Refining the overview design

& 8/15/2023 Faculty of Computer Science and Engineering 16

Instruction type (review)

op 'S rt rd shamt | funct
6 bits 5 bits 5 bits 5 bits 5 bits 6 bits
op S rt constant or address
6 bits 5 bits 5 bits 16 bits
op address
6 Dits 26 bits
= Note:

= All MIPS instructions are 32-bit wise
= All MIPS Iinstructions contain 6-bit OP

(most significant)

& 8/15/2023

Faculty of Computer Science and Engineering

17

INnstruction Fetch

32-bit [
register |

& 8/15/2023

Read
address

Instruction

Instruction

memory

Faculty of Computer Science and Engineering

-1 Increment by
4 for next
instruction

Memory
which stores
program
instructions

18

Instruction Fetch (cont.)

32-bit
register

& 8/15/2023

add S$tl, $s0, StoO
> pC e v St2, 06t Increment by
add s$t3, $s0, $ao0
sb $t2, 0(St3) -4 forngxt
beq $t2, S$zero, exit INstruction
addi $SO, $SO, 1 .
R Jj loop
| ,/,/ .« .. - \\\\\\\ :
P Instruction Memory
| | .
| |
: memory : which stores
: program
' instructions

Faculty of Computer Science and Engineering

19

R-Format Instructions

Collection of 32
registers, aka
registerfile

= Read two register operands
= Perform arithmetic/logical operation
= Write register result

1
U

-
2, | Read . ALU operation
register 1 Reag:t"
—> —>
Register 5 | Read data’l
numbers register 2 7 >
i Data
5 |write Registers
==
q register Read
{ .| Write data 2 J
Data
Data
RegWrite
a. Registers b. ALU

& 8/15/2023 Faculty of Computer Science and Engineering 20

R-Format Instructions (example})
add $S0, $a0, $tO

Rtype | 000000 | a0=4 | t0O=8 |sO=16{00000| 10000

31:26 25[2 1 ZOIl'lé 15011 10:6 5.0
4 O Reqd ALU operation
register 1 Read content of
>) —
8 5 |Read data 1 register $a0
S register2
16 5 Reqi
5 | write egisters
register($s0) Read content of
. wite data 2 register $t0
Data
RegWrite

& 8/15/2023 Faculty of Computer Science and Engineering 21

Your turn

= Assume: $4 =104, $5=105, ..., $31 =131
= What is the value of read data 1 if we assign 6 to read register 17
= Whatis the value of read data 2 if read register 2 = 127

= If write register = 10 and Write data = 12
= Which register is written and

_ _ _ 2, | Read
= What value is that (in case RegWrite = 0/1)? register 1 Read |,
5 | Read datal
register 2
S |write Registers
register Read
> Write data 2
Data

& 8/15/2023 Faculty of Computer Science and Engineering RegWrite 22

Load/Store Instructions

= Read register operands

= (alculate address using 16-bit offset
= Use ALU, but sign-extend offset

= |oad: Read memory and update register
= Store: Write register value to memory

MemWrite

— | Address F;Z?g—'
16 Sign- 32
Data extend
__ o |Write ~Memory
data
MemRead

a. Data memory unit b. Sign extension unit
c" 8/15/2023 Faculty of Computer Science and Engineering

23

Branch Instructions

= Read register operands

= Compare operands
= Use ALU, subtract and check Zero output

= Calculate target address
= Signh-extend displacement

= Shift left 2 places (word displacement|

" Addto PC+ 4
= Already calculated by Instruction fetch

& 8/15/2023 Faculty of Computer Science and Engineering

24

& 8/15/2023

Just r-

re-routes
wires

~o

Branch Instructions

~— PC + 4 frominstruction Datapath —

Instruction

Read
register 1

Read
register 2

Read

data 1

Write Registers

register

Write
data

Read

data 2

RegWriteL

Branch
Add SUME™ 4o rget
4*ALU operation
To branch
ALUZero control logic
. Sign-bitwire
. replicated

Faculty of Computer Science and Engineering

25

Composing the Elements

= First-cut data path does an instruction in
one clock cycle

= Fach datapath element can only do one
function at a time

* Hence, we need separate instruction and data
memories

= Use multiplexers where alternate data
sources are used for different instructions

& 8/15/2023 Faculty of Computer Science and Engineering 26

R-Type/Load/Store Datapath

= add $S0, Sa0

Sto0

4
> Reth 1 ALU operation
eOE theag MemWrite
ata
_ Read MemtoReg
Instructio register 2 ALUSIC
Registers Read
register i
X
> Write — 0
: > Write
RegWrite data emory
16 > Sign_ 32 MemRead
extend

& 8/15/2023

Faculty of Computer Science and Engineering

27

R-Type/Load/Store Datapath

= lw S$SO,

Instructio QI

& 8/15/2023

4 (Sao0)

- Reth . ALU operation
eOE theag MemWrite
ata
Read MemtoReg
register?2 ALUSTIC
Registers Read
o » Write dlzteaag - » Address " }\/I
register i
_ X
> Write > 0
: > Write
RegWrite data emory
16 > Sign_ 32 MemRead
extend

Faculty of Computer Science and Engineering

28

R-Type/Load/Store Datapath

= sw $SO,

4 (Sao0)

~ Read ALU operation
register1 Read _
; tea1 MemWrite
ata
_ Read MemtoReg
Instructio register 2 ALUSIC
Registers Read
o » Write dlzteaag - » Address " }\/I
register i
_ X
» Write > 0
data Data
: > Write
RegWrite data EmMory
16 > Sign_ 32 MemRead
extend

& 8/15/2023

Faculty of Computer Science and Engineering

29

Full Datapath

PCSrc

\

Add

8/15/2023

e »| Read

address

Instruction

Instruction
memory

Read
register 1

Read
register 2

Write
register

5| Write
data

Registerspaag

Read

data 1

data 2

RegWrite ‘

xcZ

ALU
Add result

AN ALU operation

MemWrite

Address

Write

data memory

MemtoReg

Read |_,
data

xcZ

Data

MemRead

Faculty of Computer Science and Engineering

30

ALU Control

= ALU used for
» | oad/Store: F = add
= Branch: F = subtract
= R-type: F depends
on funct field

ALU control Function
0000 AND
0001 OR
0010 add
O110 subtract
Ol11 set-on-less-than
1100 NOR

& 8/15/2023 Faculty of Computer Science and Engineering

31

Closer look at a 1-bit ALU

Ainvert Operation

ALU control _ | Binvert Carryln‘
Function v]

Ainvert | Binvert | Operation a- 0
0 0 00 AND 1

1D
0 | OF |
—

O >

0 10 b w‘ T) Result
S —/

] 10 -

]

]

0

]] S_L_'F vy CarryOut
00 NOR

Without SLT implementation

— 1| OO0 |0

8/15/2023 Faculty of Computer Science and Engineering

Closer look at a 1-bit ALU

Ainvert Operation
ALU control _ | Binvert Carryln‘
. . — Function w !
Ainvert | Binvert | Operation a 0 _>')
0 0 00 AND 1 ‘
0 0 01 OR ! L
0 0 10 b . m i+ , Result
0 | 10 %
0 | X SLT <7)
| | 00 NOR T e B
detection Overflow

With SLT implementation

1-bit ALU[0] 1-bit ALU [31]

8/15/2023 Faculty of Computer Science and Engineering

ALU Control

= Assume 2-bit ALUOp derived from opcode
= Combinational logic derives ALU control

opcode ALUOp | Operation funct | ALU function ALU control
I 00 | load word XXXXXX | add 0010
SW 00 | store word XXXXXX | add 0010
beg 01 | branch equal XXXXXX | subtract 0110
R-type 10 | add 100000 | add 0010
subtract 100010 | subtract 0110
AND 100100 | AND 0000
OR 100101 | OR 0001
set-on-less-than 101010 | set-on-less-than Ol11

& 8/15/2023

Faculty of Computer Science and Engineering

34

The Main Control Unit

= Control signals derived from instruction

R-type op s rt rd [shamt| funct
31:26 25:21 20:16 »\l 5:11 10:6 5.0
029/ 1350143 | rs rt \ address
3126 25:21 20:16’\ \ 15:0 f
Branch| 4 rs rt \ \ address
31:26 25:21 20:16 N 15:0 \
opcode always read, writefor R- sign-extend
read except for typeand and add
load load

& 8/15/2023 Faculty of Computer Science and Engineering

Datapath With Control

——

ALU
4 — Add result

>
RegDst /

Branch
| MemRead

Add

Instruction [31-26] |MemtoReg

™| control |ALUOp

| MemWrite

| ALUSrc
Regylwite

Read addres:s

Instruction

Instruction [25-21]

Instruction [20-16]

Read
register 1
Read

Read datal
" |register 2

[31—0]—l L.

Instruction| | |nstruction [15-11]
memory | |¢ >

Write Read . | Address

Register ~ data2
Write

Read
data

Data

I—‘XCEO

8/15/2023

Instruction [15-0]

4
-—\x:gc;\

data .
Registers

Write

Instruction [5-0]

>|data

oxc2r

memory

R-Type Instruction

—> >
Add
ALU
4 = Add resulf
-
RegDst
Branch
| MemRead
Instruction [31-26] MemtoReg
" | Control | ALUOp
MemWrite
/ ALUSrc
RegWrite
Instruction [25-21] Read
| pc le> ———register 1 Read
Instruction [20-16] Read datal
Instruction : register 2
[31-0] M \é\/rite dlg'?:g Address .4 1
: t
Instruction Instruction [15-11] ;‘(esister data Il\jll
memory | |e > 1) |write Data X
. |data memory 0
Registers Write
> data
Instruction [15-0] 16 _ 32
wBHic(M 8/] 5/2023 Instruction [5-0]

L oad Instruction

Add

Add ALU___»
result

RegDst
Branch
| MemRead

Instruction [31-26] MemtoReg

" | Control | ALUOp
MemWrite

| ALUSrc

RegWrite

Instruction [25-21] Read
—————|register 1

Read

Instruction [20-16] Read datal
register 2

Write Read
Register ~ data2

Write
data

Instruction
[31-0]

Address e
data

Data
memory

Registers Write
>|data

Instruction Instruction [15-11]
memory | e >

HXCEO

oxc2r

16

Instruction [15-0] Sign 32

=®

wBHic(M 8/] 5/2023 Instruction [5-0]

Branch-on-Equal Instruction

Add

ALU
4 — sl result—__>

RegDst
Branch
| MemRead

Instruction [31-26] MemtoReg

" | Control | ALUOp
MemWrite

| ALUSrc

RegWrite

Instruction [25-21] Read

| pc (e» ———— |register 1 -
Instruction [20-16] Read datal
register 2

Write Read
Register ~ data2

Write
data

Instruction
[31-0]

Address Read

data

Data
memory

Registers Write
>|data

Instruction Instruction [15-11]
memory | |é .

PxcZO0

Instruction [15-0] 16 .| Sign 32

> | extend

oxec2r

wBHic(M 8/] 5/2023 Instruction [5-0]

Exercise

= What are the values of control signal of
following instructions?

bne S$sl, $s2, exit

SW Ssl, 4(sa0)

& 8/15/2023 Faculty of Computer Science and Engineering

40

Implementing Jumps

Jump 2 address
31:26 250

= Jump uses word address

= Update PC with concatenation of

= Top 4 bits of old PC

= 26-bit jump address

= 00
= Need an extra control signal decoded from
opcode

& 8/15/2023 Faculty of Computer Science and Engineering

Datapath With Jumps Added

Instruction [25-0] Shift Jump address [31-0]
left 2
28 | pc+4[31-28]
Add : \
d ALU
4= result
Instruction[31-26 Sontol
Instruction [25-21]
pc Read ¢ »Read
Ay re»nea register 1 Read
address d
Instruction [20-16] . atal
Instruction 0 ea
ter 2
[31-0] M register OIRead 0 Address Read 1
q u = Write ata2
Instruction | | linstruction [15-11] | Register M data M
memory > 1 u Dat u
' |Write p ’1‘ " rzf"‘ar X
data Registers nemory
Write
data
Instruction [15-0]

Instruction [5-0]

Bk 8/15/2023

Performance Issues

= | ongest delay determines clock period
= (Critical path: load instruction

* |Instruction memory — register file > ALU — data
memory 2 MUX.

= Not feasible to vary period for different
Instructions

= Violates design principle
= Making the common case fast

= We will improve performance by pipelining

BK, 8/15/2023 Faculty of Computer Science and Engineerin
¢ y gineering

43

Your turn

= \What is critical path of following
INnstructions:

bne, sw

& 8/15/2023 Faculty of Computer Science and Engineering

44

Pipelining Analogy

Pipelined laundry: overlapping execution
= Parallelism improves performance

:::‘:H'.!H!!H!!H!!! * Four loads:
» B0=l__ = Speedup =8/3.5=2.3
: S0s=sl__
‘ Bosfl _
. B0
= R —— S = Non-stop:
orde; .%. u SpGEdUp
: lg. =2n/(0.5n+1.5) =4
c @
> g5 = number of stages

BK, 8/15/2023 Faculty of Computer Science and Engineerin
¢ y gineering

45

MIPS Pipeline

= Five stages, one step per stage
* |F: Instruction fetch from memory
= |D: Instruction decode & register read
= EX: Execute operation or calculate address
= MEM: Access memory operand
= WB: Write result back to register

BK, 8/15/2023 Faculty of Computer Science and Engineerin
¢ y gineering

46

Pipeline Performance

= Assume time for stages is

100ps for register read or write
200ps for other stages

= Compare pipelined datapath with single-cycle datapath

& 8/15/2023

| (| RS | uwop | ey | Regser | o
W 200ps| 100ps| 200ps| 200ps| 100 ps | 800PS|
SW 200ps 100ps| 200ps 200ps /00ps
R-format 200ps 100ps| 200ps 100ps| 600ps
beg 200ps 100ps| 200ps 500ps

Faculty of Computer Science and Engineering

47

Pipeline Performance

Single-cycle (T.= 800ps)

Program
execution 200 400 600 800 1000 1200 1400 1600 1800
order Time | | | T T T | | —>
(in instructions)
Instruction Data
lw $1, 100($0) fetch |Red| ALU access | 1°9
w $2,200($0) 800 ps Meen | |Re9| AU | ot |Reg
B B Instruction
lw $3, 300($0) 800 ps fetch
\ B — e
800 ps

Pipelined (T.= 200ps)

Program
execution
order T 200 400 600 800 1000 1200 1400
(in instructions] I I I I | | |
Instruction R ALU Data R
lw $1, 100($0) fetch €9 access €9
w $2,200($0) 200 ps |mSructon Reg| AU | PR IReg
! p fetch access
w $3, 300($0 Instruction Data
$ ($0) 200 ps fetch Reg | ALU access |9
!) < - < - .

200 ps 200 ps 200 ps 200 ps 200 ps

cK 8/15/2023 Faculty of Computer Science and Engineering

Pipeline Speedup

= |f all stages are balanced

m |.e. all take the same time

= Time between instructions ipelined
= Time between instructions nonpipelined
Number of stages

* |f not balanced, speedup is less

= Speedup due to increased throughput

= [atency (time for each instruction) does not
decrease

= \What is the value of pipeline CPI?

BK, 8/15/2023 Faculty of Computer Science and Engineerin
g y gineering

49

Pipelining and ISA Design

= MIPS ISA designed for pipelining

= All instructions are 32-bits

= FEasier to fetch and decode in one cycle

= c.f. x86: 1-to 15-byte instructions
* Few and reqgular instruction formats

= (Candecode and read registers in one step
= |[oad/store addressing

= (Can calculate address in 3rd stage, access memory in 4th
stage

= Alignment of memory operands
= Memory access takes only one cycle

BK, 8/15/2023 Faculty of Computer Science and Engineerin
¢ y gineering

50

Hazards

= Situations that prevent starting the next instruction
INn the next cycle

= Structure hazards
= A required resource Is busy

= Data hazard

= Need to wait for previous instruction to complete its
data read/write

= Control hazard

= Deciding on control action depends on previous
Instruction

& 8/15/2023 Faculty of Computer Science and Engineering

51

Structure Hazards

= Assume Instruction Memory and Data Memory are in the same
single memory

Memory
conflict

==

& 8/15/2023 Faculty of Computer Science and Engineering 52

Structure Hazards

= Conflict for use of a resource

= |In MIPS pipeline with a single memory
* [oad/store requires data access

* [nstruction fetch would have to stall for that cycle
= Would cause a pipeline “bubble”

= Hence, pipelined datapaths require separate
INnstruction/data memories

= QOr separate Instruction/data caches

BK, 8/15/2023 Faculty of Computer Science and Engineerin
¢ y gineering

53

Data Hazards

= An instruction depends on completion of data access

by a previous instruction
add $s0, $t0, Stl
sub $t2, $s0, S$t3

2(.)0 4(?0 690 890 1QOO 12|OO 14|00 1600 ,

18 || Updated new $s0

MEM 48

Decode old SsO

Time

add $s0, $t0, $t1

sub $t2 $s0, $t3

(wrong|
& 8/15/2023 Faculty of Computer Science and Engineering

Data Hazards (bubble, stall, delay)

= An instruction depends on completion of data access

by a previous instruction
add $s0, $t0, Stl
sub $t2, $s0, S$t3

ZQO 490 690 8QO 1QOO 12|OO 14|00 1600 .
!}MEMig
bubble bubbley (_bubble
O O
bubble bubbley _bubble b
sub $t2 $s0, $t3 E-—E ID
& 8/15/2023 Faculty of Computer Science and | 5

Time

add $s0, $t0, $t1

bubble

55

Forwarding (aka Bypassing)

= Use result when it Is computed
= Don’t walit for it to be stored in a register
= Requires extra connections in the datapath

Program

execution _ 200 400 600 800 1000
order Time | | | ' |

(in instructions)
add $s0, $t0, $t1

sub $t2, $s0, $t3 El—[

& 8/15/2023 Faculty of Computer Science and Engineering

MEM 18

Pipeline visualization

Time (in clock cycles)

CCl CC2 CC3 CC4 CCH CCb CCTr7 CC8 CCH

Instruction 1 § ‘H‘“REG_ ALU T DM e

e/
i

Instruction 4 M — —‘:‘REE: DM — |—REG
o || e | | o

M — —':'REG DM —REEE
s || s || e

& 8/15/2023 Faculty of Computer Science and Engineering

How many stalls?

= Example 1
lw S$2, S$1, S3
and 512, S2, $5
or S$13, $6, S$2
add $14, $12, S$S2
sw S$14, 100(S$S2)

= Example 2
addi s$2, S0, 10
Loop: addi $2, 52, -1
bne 352, $0, Loop

& 8/15/2023 Faculty of Computer Science and Engineering

58

Load-Use Data Hazard

= Can't always avolid stalls by forwarding

= |f value not computed when needed
= Can't forward backward in timel

& 8/15/2023

Program
execution

order Time
(in instructions)

lw $s0, 20($t1)

sub $t2, $s0, $t3

200 400 600 300 1QOO 12.00 14.00 .

e
bubble bubble
MEM

M
bubble bubble bubble
<0
I B

Faculty of Computer Science and Engineering

59

Code Scheduling to Avoid Stalls

= Reorder code to avoid use of load result Iin
the next instruction
= CcodeforA=B+E:C=B+F:

Iw Stl, 0($tO 1w Stl, 0(stO0)

)
1w @ 4 (5t0) 1w (5t2) 4 (5t0)
<l | (2dd St3, stl, @ 1w
sw $t3, 12(0)/ add st3, ,
1w @ 8 (St0) sw St3,
stall —Tadd $t5, $tl @ add 5tbh,

sw S$Stbh, (St0) sw Sth5, 16($t0)
& 8/15/2023 13 cycles 11 cycles

60

How many stalls? And ...

1w $S10, 20($1)
bne $10, S$S9, else
sub $11, $2, S3
add s$12, $11, $4
J exit

else: 1lw S$S13, 24(S12)
add s$14, $5, S12

ex1t:

& 8/15/2023 Faculty of Computer Science and Engineering

61

Control Hazards

= Branch determines flow of control

= Fetching next instruction depends on branch
outcome

= Pipeline can’t always fetch correct instruction
= Still working on ID stage of branch
= |In MIPS pipeline

= Need to compare registers and compute target
early in the pipeline
= Add hardware to do it in ID stage

BK, 8/15/2023 Faculty of Computer Science and Engineerin
¢ y gineering

62

Stall on Branch

= \X/ait until branch outcome determined
before fetching next instruction

Program
execution . 200 400 600 800 1000 1200 1400 o
order Time | | | | | | |
(in instructions)
Instruction Data
add $4, $5, $6 fetch Reg ALU a0Cess Reg
<« »|Instruction Data
beq $1’ $2’ 40 200 ps fetch access
or $7, $8, $9 Instruction Data |
v 400 ps fetch access g

& 8/15/2023 Faculty of Computer Science and Engineering 63

Branch Prediction

= | onger pipelines can't readily determine branch
outcome early

= Stall penalty becomes unacceptable

= Predict outcome of branch
= Only stall if prediction is wrong
= |In MIPS pipeline
= (Can predict branches not taken
= Fetch instruction after branch, with no delay

& 8/15/2023 Faculty of Computer Science and Engineering 64

MIPS with Predict Not Taken

8/15/2023

&
TP.HCM

Program
execution
order

U _ Time
(in instructions)

add $4, $5, $6
beq $1, $2, 40

lw $3, 300($0)

\

Program
execution
order

(in instructions)

add $4, $5, $6

beq $1, $2, 40

Time

|

— > or $7, $8, $9

200 400 600 800 1000 1200 1400
| | | | | | |
Instruction Data
fetch Reg ALU access Reg
- Ins:rl:cr't]ion Reg ALU Data Reg
200 ps etc access
~——"Instruction Data
200 ps fetch Reg| ALU access | ¢9
200 400 600 800 1000 1200 1400
T T T T T T T
Instruction Data
fetch Reg ALU access Reg
- Ins;[rltjc:]ion Reg ALU Data
200 ps etc (f access
bubble bubble bubble bubble
@
« Instruction Data Re
400 ps fetch access 9

Faculty of Computer Science and Engineering

65

More-Realistic Branch Prediction

= Static branch prediction
= Based on typical branch behavior

= Example: loop and if-statement branches
= Predict backward branches taken
= Predict forward branches not taken

= Dynamic branch prediction

= Hardware measures actual branch behavior
= e.g., record recent history of each branch

= Assume future behavior will continue the trend
= \WWhen wrong, stall while re-fetching, and update history

BK, 8/15/2023 Faculty of Computer Science and Engineerin
¢ y gineering

66

Pipeline Summary

= Pipelining improves performance by increasing
INnstruction throughput

= Executes multiple instructions in parallel

= EFach instruction has the same latency

= Subject to hazards
= Structure, data, control

= |nstruction set design affects complexity of
pipeline iImplementation

& 8/15/2023 Faculty of Computer Science and Engineering

67

Single clock cycle vs Pipeline vs
Multlple clock cycle

time

Lw
Sw
add

Lw
Sw
add

Lw
Sw

add
& 8/15/2023

345 708 9oz i3] 1415
IF ID E M WB
IF ID E M WB
Single clock cycle: 3 cycles, cycletime =5 secs
IF|1ID| E | M |WB
IF | ID| E | M
Multiclockcycle:5+ 4 + 4 = [3 cycles,cycletime =1 secs
IF|1ID| E | M |WB

Pipeline: 7 cycles, cyclestime =1 secs

68

Multiple clock cycle

Instruction
Load
Store
Branch
Arithmetic/logical
Jump

& 8/15/2023

#cycles

5

N B W B

LI R I I O I R

O O O U U

EXE | MEM | WB
EXE | MEM
EXE

EXE | WB

Faculty of Computer Science and Engineering

MIPS Pip

. Instruction fetch

elined Datapath

EX: Exec)
address calculation

ID: Instruction decode/

register file read

MEM

Right-to-left
flow leads to
hazards

8/15/2023

Add

4—>

Address

Instruction

Instructio
memory

e

WB

MEM: Memory access

WB: Write back

Add
ADDresul
Shift
left2
—| Read Read >
register 1 data 1 Zero >
Read
I register 2 ALY ALY >| Address
] 0 resu Rea >
Registers data 1
»| Write Read M Data M|
register data 2 : memory u
—»| Write 1 OX
/ data 5 | Write
| data
16 ;[ig) 32
V w
Faculty of Computer $cience and Engineering

70

Pipeline registers

= Need registers between stages

* To hold information produced in previous
cycle

& 8/15/2023

Faculty of Compdter Science and Engineering

Pipeline Operation

= Cycle-by-cycle flow of instructions through the
pipelined datapath
= “Single-clock-cycle” pipeline diagram
= Shows pipeline usage In a single cycle
= Highlight resources used

= c.f. “multi-clock-cycle” diagram
= Graph of operation over time

= We'll look at “single-clock-cycle” diagrams for
load & store

& 8/15/2023 Faculty of Computer Science and Engineering

72

IF for Load, Store, ...

Instruction fetch

8/15/2023

Address

ID/EX

data

c

°

2—»| Rea

2 register 1 dl;tteaaclj

e Read
register 2

Read
Write data 2
register
__p|Write Registers

Shift
left 2

Add Add
resul

\

Y

1%,

Sign-
extend

EX'MEM

Address

Write
data

Data
memory

Read
data

MEM/WB
- —

Faculty of Computer Science and Engineering

/3

ID for Load, Store, ...

Instruction decode

8/15/2023

Address

Instruction
memory

IF/ID

Y

Instruction

Read

register 1

Read

register 2

Write
register

Write
data

R

ID/EX

EX'MEM

MEM/WB
Read >
Address data i
Data
memory
Write
data

Y

Faculty of Computer Science and Engineering

74

EX for Load

Read
data

MEM/WB
- —

| Iw |
Execution
IF/1ID ID/EX EX/MEM
»
“ a0, 25
Shift
left 2
= 0 g

" g

u PC Address 5 »| Read

* @ register 1 dlgteaaclj > -

1 -_
Read L

Instruction > register 2
g Read o
nemen Write data 2 o > > Address
reglster .
Write Registers
| data &> memory
> Write
data
18 o[sign- |3
' extend

8/15/2023

Faculty of Computer Science and Engineering

75

MEM for Loa

lw

Memory

8/15/2023

Address

Instruction
memory

IF/ID

ID/EX

Instruction

RIS

Read
register 1

Read
register 2

Write
register

Read
data 1

Read
data 2

Write Registers

data

Shift
left 2

EX'MEM

Add Add
resul

\

Y

1%,

Sign-
extend

Address

MEM/WB

Faculty of Computer Science and Engineering

76

BK

TP.HCM

W B for Load

8/15/2023

Address

Instruction
memory

IF/ID ID/EX EX'MEM

ruction

L

\

Y

Wrong
register
number

Read

Y

ILIInSt

#\A

AN

Address

Write
data

Data
memory

Read
data

lw

Write back

MEM/WB

Y

1

Faculty of Computer Science and Engineering

77

orrected Datapath for Load

8/15/2023

Address

Instruction
memory

Add Add
resul

EX'MEM

MEM/WB

»|

IF/ID ID/EX
Shift
left 2
c
2
S »[Read
s—>| Rea Read -
@ register 1 data 1 >
e Read
o J register 2
g _ Read >
o |Write data 2
register
__p|Write Registers
data
o &, [sin]3 ||
extend

Address

Data

memory

Write
data

Read
data

> —>(0

Y

Y

Y

Y

Faculty of Computer Science and Engineering

/8

EX for Store

Read
data

MEM/WB
- —

| sw |
Execution
[FND ID/EX EXIMEM
.
“ a0, 25
Shift
left 2
> c

" g

u PC Address 5 »| Read

* @ register 1 dlgteaaclj > -

1 -_
Read L

Instruction > register 2
g Read o
nemen Write data 2 o > > Address
reglster .
Write Registers
| data &> memory
> Write
data
18 o[sign- |3
' extend

8/15/2023

Faculty of Computer Science and Engineering

79

MEM for Store

sSw

8/15/2023

Address

Instruction
memory

Add Add
resul

IF/ID ID/EX
£ —
Shift
left 2
c
2
= —»[Read
s> Rea Read -
@ register 1 data 1 >
e Read
o register 2
g) Read >
Write data 2

RIS

register

Write Registers
data

18 5 Sign-

extend

EX'MEM

Memory

Read
data

MEM/WB
> —

Faculty of Computer Science and Engineering

80

W/ B for Store

8/15/2023

Address

Instruction
memory

Y

IF/ID

ID/EX

Instruction

Read
register 1

Read
register 2

Write
register

Write Registers

data

Read

Y

Shift
left 2

data 1

Read
data 2

Y

1%,

Sign-
extend

EX'MEM

SwW

Write back

MEM/WB

»|

Address

Data
memory

Write
data

Read | p-| >
data 0

Y

Faculty of Computer Science and Engineering

Multi-Cycle Pipeline Diagram

" Form.showing resource usage

execution Time (in clock cycles)
order CCl CC2 CC3 CC4 CCH CCob €CC7 €CC8 CC9
(in instructions) _ _

lw $10, 20($1) ~H—=RE§: [ALUH i oM —{Rec

sub $11, $2, $3

add $12, $3, $4

lw $13, 24($1)

add $14, $5, $6

\ 4
& 8/15/2023

—EREG

EG
—-REG :E{—[DM —| —|EEG
E

—I:DM——

M

ALU

D

R
R

IM —} g:H: ALU TD_MT_|:|—REG

Single-Cycle Pipeline Diagram

= State of pipeline In a given cycle

| add $14, $5, $6 | Iw $13,24 ($1) | add $12, $3, $4 | sub$11,$2, $3 |lw $10,20($1) |
| Instruction fetch ! Instruction decode ! Execution ! Memory | Write-back !
IF/ID ID/EX EX/MEM MEM/WB
—
4 —>
(0 5
M 3
u PC Address g Read Read
X @ register 1 data 1
r Readt 2
. register
Instruction Read
memory Write dgteaag Address dg?a id OM
™ register Data "
\é\grtge Registers memory 1x
| Write
data

Bk 8/15/2023

Pipelined Control (Simplified

PCSrc

ID/EX EXIMEM ME

. Add ,
Shift resul Branch

Left 2 I_}

Me mIWrite

RegWrite
|

Address —| Read Read

register 1 data 1

¢—>|Read
register 2

Instruction

MemtoReg

Read
| Address d:?a

Data
memory

Instruction
memory

) Read —»-|
>|\Write data 2
register

—|yiite Registers

- » | Write
data

Instruction |
16 32 6

(15-0) | \ T

MemRead

A

Instruction
(20-16)

ALUOp

Instruction
(15-11)

chgo
Y
Y

RegDst

TP.HCM

BK 8/15/2023 Faculty of Computer Science and Engineering 84

Pipelined Control

= Control signals derived from instruction
= As In single-cycle implementation

Instruction

M W
EXE 4t M [- WB__ ..
& 8/15/2023 Facultyof Computer Scienceand Engineering 85
IF/ID ID/EX EX/MEM MEM/WB

Pipell

4
l»- (0
M
;’ " | Address
-
Instruction
memory

BK) 8/15/2023

IF/ID

ID/EX

WB

Instruction

|

RegWrite

—

write Registers

Read
register 1

Read
register 2

data 1

Read >

Read >

Write data 2|

register

Instruction

Ins

[15-0] 16, [

truction

[20-16]

3

Ins
[15

truction
-11]

EY?NMNB

>lad
Add -l
Shift resul Branch
L eft ALUSTrc o Q 3
5 S
> E E
>A Zerof+-
v ddréAsll_JU___» >|Address Eif‘f I8 i"'
M
M Data :
X
4 memory °
- | . |Write
data
6
— >
MemRead
5 ALUOp
) - g
; >
X
RegDst

Faculty of Computer Science and Engineering

86

Data Hazards in ALU Instructions

= Consider this sequence:
sub $2, $1, $3
and $12, $2, S5
or S$13, So6, S2
add 514, $2, S$2
sw S$15, 100($2)
= \We can resolve hazards with forwarding
* How do we detect when to forward?

& 8/15/2023 Faculty of Computer Science and Engineering

87

Dependencies & Forwarding

Time (in clock cycles)

Value of
register $2: 10

CC1l CC2 CC3 CC4 CCS CCoB CCT7 CC8 CCH

10 10 10 10/20 20 20 20 20

1.sub $2, $1, $3
2.and $12, $2, $5
3.or $13, $6, $2

4.add $14, $2, $2

¥ 5.sw $15, 100 ($2)

& 8/15/2023

~|:|—4REG

Faculty of Computer Science and Engineering

88

Detecting the Need to Forward

= Pass register numbers along pipeline
= e.g., ID/EX.RegisterRs = register number for Rs sitting in
D/EX pipeline register
= ALU operand register numbers In EX stage are given by
= |ID/EX.RegisterRs, ID/EX.RegisterRt

= Data hazards when \
» la. EXYMEM.RegisterRd = ID/EX.RegisterRs || exmem
I1b. EX/MEM.RegisterRd = ID/EX.RegisterRt] | pipeline reg
2a. MEM/WB.RegisterRd = ID/EX.RegisterRs Eord from
2b. MEM/WB.RegisterRd = ID/EX.RegisterRt | vEmws

) | pipeline reg

& 8/15/2023 Faculty of Computer Science and Engineering

Detecting the Need to Forward

= But only If forwarding instruction will write
to a register!
= EX/MEM.RegWrite, MEM/WB.RegWrite

= And only if Rd for that instruction is not
Szero

= EX/MEM.RegisterRd # O,
MEM/WB.RegisterRd # O

& 8/15/2023 Faculty of Computer Science and Engineering 90

No Forwarding

ID/EX EX/IMEM
—> — -
—>
Registers ALU——— o
—> >

Y

Y

Data
memory

MEM/WB

|

L&

<

a. No forwarding

8/15/2023 Faculty of Computer Science and Engineering

91

Forwarding Path

ID/EX EX/MEM MEM/WB
. "M
. . > u
— =
Registers 4 ForwardA T S
—| >
- Data I — >
memory

xcZ

Rs g
R
Rt

EX/MEM.RegisterRd

Rd

vy

xc=Z

»(Forwarding |=—

. - MEMMB.RegisterRd
> unit <

b. With forwarding
8/15/2023 Faculty of Computer Science and Engineering

Forwarding Conditions

= EX hazard

" If (EX/MEM.RegWrite
and (EX/MEM.RegisterRd # 0|
and (EX/MEM.ReqgisterRd = ID/EX.ReqgisterRsj|
ForwardA= 10

= if (EX/MEM.RegWrite
and (EX/MEM.RegisterRd # 0
and (EX/MEM.ReqgisterRd = ID/EX.RegisterRt))
ForwardB= 10

BK, 8/15/2023 Faculty of Computer Science and Engineerin
¢ y gineering

93

Forwarding Conditions

* MEM hazard

= if MEM/WB.RegWrite
and (MEM/WB.RegisterRd # 0|
and (MEM/WB.RegisterRd = ID/EX.RegisterRsj)
ForwardA=01

= if MEM/WB.RegWTrite
and (MEM/WB.RegisterRd # 0|
and (MEM/WB.RegisterRd = ID/EX.ReqgisterRt))
ForwardB=01

BK, 8/15/2023 Faculty of Computer Science and Engineerin
¢ y gineering

94

Double Data Hazard

= Consider the sequence:
add $1, 351, S2
add $1,51, $3
add s1,$1, $4
= Both hazards occur
= \Xant to use the most recent

= Revise MEM hazard condition
= Only fwd if EX hazard condition isn’t true

BK, 8/15/2023 Faculty of Computer Science and Engineerin
¢ y gineering

95

Revised Forwarding Condition

= MEM hazard

if (MEM/WB.RegWrite
and (MEM/WB.RegisterRd # 0|
and not (EX/MEM.RegW'rite and (EX/MEM.ReqgisterRd # O)
and (EX/MEM.RegisterRd = ID/EX.RegisterRs))
and (MEM/WB.RegisterRd = ID/EX.RegisterRs))
ForwardA =01

if (MEM/WB.RegWrite
and (MEM/WB.RegisterRd # 0|
and not (EX/MEM.RegWrite and (EX/MEM.RegisterRd # O)
and (EX/MEM.RegisterRd = ID/EX.ReqgisterRt))

and (MEM/WB.RegisterRd = ID/EX.RegisterRt))
ForwardB =01

BK, 8/15/2023 Faculty of Computer Science and Engineerin
¢ y gineering

Datapath with Forwarding

ID/EXE
’_’ WB EXE/MEM
— Control > M >~ WB MEM/WB
IF/ID EX L > M > WB
™
M
- U >
c —_—
8 - D
. " Reei T
= Registers e > . — »M
. £ — Add
Instruction . o) U
pC memory . - 'CJ/I d Data X
memor
X y
|
IF/ID.RegisterRs)
IF/ID.RegisterRt
IF/ID.RegisterRt =m EX/MEM.RegisterRd
T IF/ID.RegisterRd - . "

(= c

> Forwarding b MEM/WB.RegisterRd

> unit /Z

BK 8/15/2023 Faculty of Computer Science and Engineering

TP.HCM

Load-Use Data Hazard

Program

execution

order
(in instructions)

& 8/15/2023

lw $2, 20($1)

and $4, $2, $5

or $8, $2, $6

add $9, $4, $2

slt $1, $6, $7

Time (in clock cycles)

CC1l CC2 CC3 CC4 CCS5 CCob CC7 CC8 CCH9

~{ i—‘;REG_

IM — —=REG

Faculty of Computer Science and Engineering

ALU

Need to stall
for one cycle

98

Load-Use Hazard Detection

= Check when using instruction is decoded In ID
stage

= ALU operand register numbers in ID stage are given

Dy
= |F/ID.RegisterRs, IF/ID.RegisterRt

= | oad-use hazard when

= |ID/EX.MemRead and _
((ID/EX.RegisterRt = IF/ID.RegisterRs) or
ID/EX.RegisterRt = IF/ID.RegisterRt))

= |f detected, stall and insert bubble

BK, 8/15/2023 Faculty of Computer Science and Engineerin 99
¢ y gineering

How to Stall the Pipeline

= Force control values In ID/EX reqgister
to 0

= EX, MEM and WB do nop (nho-operation)

* Prevent update of PC and IF/ID register
= Using Instruction Is decoded again
* Following instruction is fetched again

=]-cycle stall allows MEM to read data for Iw
= (Can subsequently forward to EX stage

BK, 8/15/2023 Faculty of Computer Science and Engineerin 100
¢ y gineering

Load-Use Data Hazard

Program

execution
order
(in instructions)

& 8/15/2023

Time (in clock cycles)

lw $2, 20($1) M
and becomes nop
and $4, $2, $5

or $8, $2, $6

add $9, $4, $2

~{ i—‘;REG_

M

Faculty of Computer Science and Engineering

O

—CREG

Lo %_r

DM —

ALU

CC1l CC2 CC3 CC4 CCS5 CCob CC7 CC8 CCH9

c Stall inserted
bubble .| here

101

Datapath with Hazard Detection

8/15/2023

PCWrite

T
o

Instruction
memory

IF/ID.Write

Instruction

unit

Hazard ID/EX.MemRead
— detection
—> unit
A
ID/EXE
EXE/MEM
»(Control WB L
00— L M
T\
= = M
» U >
> X
Registers - i
> e Add P
M
o X memory
IF/ID.RegisterRs
IF/ID.RegisterRt M
IF/ID.RegisterRt Rt |
IF/ID.RegisterRd Rd, U o
ID/EXE.RegisterRt @
sf—> Forwarding

Faculty of Computer Science and Engineering

102

Stalls and Performance

= Stalls reduce performance
= But are required to get correct results

= Compller can arrange code to avoid hazards
and stalls
= Requires knowledge of the pipeline structure

& 8/15/2023 Faculty of Computer Science and Engineering 103

Branch Hazards

Program

execution Time (in clock cycles)

order
(in instructions)

40 beq $1, $3, 28"
|

44 and $12, $2, $5

48 or $13, $6, $2

52 add $14, $2, $2

'

Y72 Iw $4, 50($7)

& 8/15/2023

M [— F=REG]_| [>ALU oM
M — —=ReG|_|[_CALU
IM — F=REG

J(I

—CREG

Faculty of Computer Science and Engineering

ALU

CC1l CC2 CC3 CC4 CCS5 CCob CC7 CC8 CCH9

Flush these
Instructions
> (Set control
values to 0)

104

Reducing Branch Delay

= Move hardware to determine outcome to ID stage
= Target address adder

= Register comparator

= Example: branch taken

36:
40 :
44 .
48 :
52:
56:

72

& 8/15/2023

sub 510,
beq 51,

and 512,
or S$13,
add $14,
slt 515,

lw S4,

s4,
$3,
S2,
S2,
S4,
S6,

0(57)

Faculty of Computer Science and Engineering

S8
]

$5
S6
S 2
ST

105

Example: Branch Taken (clock 3)

and $12, $2, $5 beq$1, $3,7 i sub $10, $4, $8 before<l> | before<2>

IF.Flush

I

I

| Hazar

: detection

i unit /
I

I

I

|

: > (Contro 8

: [’E
44

g

ata
memory

& 8/15/2023 Faculty of Computer Science and Engineering 106

Example: Branch Taken (clock 4)

w $4,50(37) | Bubble | beq$1,$3,7 sub$10,$4,$8 before<l>

IF.Flush

|

| Hazar

: detection

! unit J

|

I

|

: > (Contro

:

72 :

hi
eft

& 8/15/2023 Faculty of Computer Science and Engineering 107

Data Hazards for Branches

= |f a comparison register Is a destination of 2nd
or 3rd preceding ALU instruction

add 51, $2, $3 IF I ID I EX IMEM WB
\
add $4, S5, $6 IF I 1D I EX I\MEMI WB
\
IF I ID I\%\{ IMEMIWB
\\\
beg S1, $4, target IF I ID I EX IMEMI WB

= Can resolve using forwarding

& 8/15/2023 Faculty of Computer Science and Engineering 108

Data Hazards for Branches

= |[f a comparison register is a destination of
preceding ALU instruction or 2nd preceding

load Instruction
= Need 1 stall cycle

lw S1, addr IF

MEM

WB

add $4, $5, S$6

beq stalled

& 8/15/2023

beg $S1, $4, target

EX

I\MEM

WB

foe) o

ID\

EX

MEM

WB

Faculty of Computer Science and Engineering

109

Data Hazards for Branches

= |[f a comparison register is a destination of
Immediately preceding load instruction
= Need 2 stall cycles

lw $1, addr IF I ID I EX IMEM WB

beq stalled IF I ID IOI IO
beq stalled I ID I IO IO

beq 51, $0, target I ID\I EX IMEM|I WB

& 8/15/2023 Faculty of Computer Science and Engineering

Dynamic Branch Prediction

* |n deeper and superscalar pipelines, branch penalty
IS more significant

= Use dynamic prediction
* Branch prediction buffer (aka branch history table)
* |ndexed by recent branch instruction addresses

= Stores outcome (taken/not taken)

To execute a branch

= (Check table, expect the same outcome

= Start fetching from fall-through or target
= |f wrong, flush pipeline and flip prediction

BK, 8/15/2023 Faculty of Computer Science and Engineerin 111
¢ y gineering

1-Bit Predictor: Shortcoming

" [nner loop branches mispredicted twice!

& 8/15/2023

outer: .. <

inner: ..

Beq .y .., OUter _ _
= Mispredict as taken on last iteration of
iInner loop

= Then mispredict as not taken on first
iteration of inner loop next time around

Faculty of Computer Science and Engineering 112

Z2-Bit Predictor

= Only change prediction on two successive
mispredictions

Not taken

Predict taken Predict taken

Taken

Not taken Taken

Not taken
Predict not taken
Taken :

ot take
& 8/15/2023 uwty of Computer Science and Engineering

113

Calculating the Branch Target

= Even with predictor, still need to calculate
the target address

= |-cycle penalty for a taken branch

= Branch target buffer
= Cache of target addresses

* |[ndexed by PC when instruction fetched

= If hit and instruction is branch predicted taken,
can fetch target immediately

BK, 8/15/2023 Faculty of Computer Science and Engineerin 114
¢ y gineering

Exceptions and Interrupts

= "Unexpected” events requiring change
In flow of control

= Different ISAs use the terms differently
= Exception

= Arises within the CPU
= e.g., undefined opcode, overflow, syscall, ...

" [nterrupt
* From an external I/O controller

= Dealing with them without sacrificing performance

IS hard

BK, 8/15/2023 Faculty of Computer Science and Engineerin
¢ y gineering

115

Handling Exceptions

= |n MIPS, exceptions managed by a System
Control Coprocessor (CPO)

= Save PC of offending (or interrupted) instruction
= |[n MIPS: Exception Program Counter (EPC)

= Save indication of the problem
= |n MIPS: Cause register
= We'll assume 1-bit
= (O forundefined opcode, 1 for overflow

= Jump to handler at 8000 00180

BK, 8/15/2023 Faculty of Computer Science and Engineerin 116
¢ y gineering

AN Alternate Mechanism

= Vectored Interrupts
= Handler address determined by the cause

= Example:

* Undefined opcode: CO00 0000
= Qverflow: C000 0020
. C000 0040

= |[nstructions either
= Deal with the interrupt, or
= Jump to real handler

BK, 8/15/2023 Faculty of Computer Science and Engineerin
¢ y gineering

117

Handler Actions

= Read cause, and transfer to relevant handler
= Determine action required

= |f restartable
= Take corrective action
= use EPC to return to program

= Otherwise
= Terminate program
= Report error using EPC, cause, ...

& 8/15/2023 Faculty of Computer Science and Engineering

118

Exceptions In a Pipeline

= Another form of control hazard

= Consider overflow on add in EX stage
= add $1, $2, $1
= Prevent $1 from being clobbered
Complete previous instructions
Flush add and subsequent instructions
Set Cause and EPC register values
Transfer control to handler

= Similar to mispredicted branch
= Use much of the same hardware

BK, 8/15/2023 Faculty of Computer Science and Engineerin
¢ y gineering

Pipeline with Exceptions

EX.Flush

ID.Flush

/~ Hazard
detection | Y
unit

IF.Flush

—g
<,

ID/EXE | u

r%
N

EXE/MEM

MEM/WB

1
g

> > —>
Data i~

memory

@

2]

[|
Shift
4™ Qn +—
Registers
. \ |
M Instruction

U

80000180 —>|PC memory

| X

'

yvy

g
-
W
> unit -

c 8/15/2023 Faculty of Computer Science and Engineering 120

Exception Properties

= Restartable exceptions
= Pipeline can flush the instruction
= Handler executes, then returns to the instruction

= Refetched and executed from scratch
= PC saved in EPC register

= |dentifies causing instruction

= Actually PC + 4 is saved
= Handler must adjust

BK, 8/15/2023 Faculty of Computer Science and Engineerin 121
¢ y gineering

Exception Example

= Exception on add Iin
40 sub $11, $2, $4
44 and $12, $2, $5
48 or $13, $2, $6
A4C add $1, $2, $1
50 slt $15, $S6, S$7
54 1w $16, 50($7)

= Handler

80000180 sw $25, 1000 ($0)
80000184 sw $S26, 1004 ($0)

& 8/15/2023 Faculty of Computer Science and Engineering 122

Exception Example (clock 6)

lw $16,50($7) ! slt $15, $6, $7 ' add $1, $2, $1 . or$13,%$2,%6
| | | |
| | EXFlush | | and $12,
i ID.Flush i i i
< i /~ Hazard i i i
E ! —| detection ; Y | |
m : unit__/ 1y ! v ! !
i 1 IDIEXE u—+2 i i
| | |
i Bl oK) EXE/:MEIl/IO |
: M 000 m _,
IFAID paee] X
%2,
80000180 | | —PC =2 g 51 Data
000180) g memory
o _ _

Y Y v

Y

13
15 $1 :. >
- 7 |
L~ [{Forwarding \e—
——_ unit i

Faculty of Computer Science and Engineering

123

& 8/15/2023

Exception Example (clock 7)

sw $26,1000($0)

IF.Flush

or $13,%$2, $6

80000180

& 8/15/2023

—>

000184

80000180
4—>»:

72

IFJID

bubble (nop) ' bubble ' bubble !
1 I |
| EX.Flush | |
i i i
I I I
ID.Flush ! ! !
/ Hazard i i i
detection 1 ; Y : :
unit Ly ! i |
4 I M 00 I |
IDJEXE U ; ;
O | |
/\F . %) EXEIMEM |
> Control M 000 M I
] Cause U
U)Di 0 EX ——[erc 0 X
) ‘
Shift M
G -
ters }
13
M
Dat:
U = ata
X memory
[===

'

Y

Y

|

-
L »(Forwarding

unit

|
+—

Faculty of Computer Scie

nce and Engineering '

124

Multiple Exceptions

= Pipelining overlaps muiltiple instructions

* Could have multiple exceptions at once
= Simple approach: deal with exception from earliest
INstruction

* Flush subsequent instructions

= “Precise” exceptions

" |[n complex pipelines
= Multiple instructions issued per cycle

= Qut-of-order completion
* Maintaining precise exceptions is difficult!

BK, 8/15/2023 Faculty of Computer Science and Engineerin 125
¢ y gineering

Imprecise Exceptions

= Just stop pipeline and save state
* |ncluding exception cause(s)

= Let the handler work out
= Which instruction(s) had exceptions

= Which to complete or flush
= May require “‘manual” completion

= Simplifies hardware, but more complex handler
software

= Not feasible for complex multiple-issue
out-of-order pipelines

BK, 8/15/2023 Faculty of Computer Science and Engineerin 126
¢ y gineering

Instruction-Level Parallelism (ILP)

= Pipelining: executing multiple instructions in parallel

= To Increase ILP

= Deeper pipeline
= | ess work per stage = shorter clock cycle

= Multiple issue
= Replicate pipeline stages = multiple pipelines
= Start multiple instructions per clock cycle
= (CPI< 1, souse Instructions Per Cycle (IPC)
= E.g., 4GHz 4-way multiple-issue

= 16 BIPS, peak CPI = 0.25, peak IPC = 4

= But dependencies reduce this in practice

BK, 8/15/2023 Faculty of Computer Science and Engineerin 127
¢ y gineering

Multiple Issue

= Static multiple issue
= Compililer groups instructions to be issued together
= Packages them into “issue slots”
* Compiler detects and avoids hazards

= Dynamic multiple issue

= (CPU examines instruction stream and chooses
Instructions to issue each cycle

= Compiler can help by reordering instructions

= (CPU resolves hazards using advanced techniques at
runtime

BK, 8/15/2023 Faculty of Computer Science and Engineerin 128
¢ y gineering

Speculation

= “Guess” what to do with an instruction
= Start operation as soon as possible
= (Check whether guess was right

= |f so, complete the operation
= If not, roll-back and do the right thing

= Common to static and dynamic multiple issue

= Examples
= Speculate on branch outcome
* Roll back if path taken is different
= Speculate on load
= Roll back if location is updated

& 8/15/2023 Faculty of Computer Science and Engineering 129

Compiler/Hardware Speculation

= Compiller can reorder instructions
= e.gd., move load before branch

= Can include “fix-up” instructions to recover from
Incorrect guess

= Hardware can look ahead for instructions to
execute

= Buffer results until it determines they are actually
needed

* Flush buffers on incorrect speculation

BK, 8/15/2023 Faculty of Computer Science and Engineerin 130
¢ y gineering

Speculation and Exceptions

= \X/hat If exception occurs on a speculatively
executed instruction?

" e.g., speculative load before null-pointer check
= Static speculation
= Can add ISA support for deferring exceptions

= Dynamic speculation

= Can buffer exceptions until instruction
completion (which may not occur)

& 8/15/2023 Faculty of Computer Science and Engineering 131

Static Multiple Issue

= Compiler groups instructions into “issue
packets”

= @Group of instructions that can be issued on a single
cycle

= Determined by pipeline resources required
= Think of an issue packet as a very long
INnstruction

= Specifies multiple concurrent operations
= — Very Long Instruction Word (VLIW)

& 8/15/2023 Faculty of Computer Science and Engineering 132

Scheduling Static Multiple Issue

= Compiler must remove some/all hazards
" Reorder instructions Into issue packets
= No dependencies with a packet

= Possibly some dependencies between packets
= Varies between ISAs; compiler must know!

= Pad with nop Iif necessary

& 8/15/2023 Faculty of Computer Science and Engineering 133

MIPS with Static Dual Issue

= Two-issue packets
= One ALU/branch instruction

= (One load/store instruction
= 64-bit aligned

& 8/15/2023

n+ 00
n+ 04
n+ 08
n+12
n+ 16
n+ 20

ALU/branch, then load/store
Pad an unused instruction with nop

Address

Instruction type

Pipeline Stages

ALU/branch ID EX | MEM | WB
Load/store ID EX | MEM | WB

ALU/branch ID EX | MEM | WB
Load/store ID EX | MEM | WB

ALU/branch ID EX | MEM | WB
Load/store ID EX | MEM | WB

Faculty of Computer Science and Engineering

134

MIPS with Stati al Issue

>
—
— N
- I -
u—
4 X
. g ALY >
'\
. — Ml
™M Registers u i
80000180 Tl u l» | Instruction :: - | X
N
memor - -
> X y - - Write
> - data
extend _ [sign.| . memory
exten, >
Address

Y
y v
\B 4

BK, 8/15/2023 Faculty of Computer Science and Engineering 135

Hazards in the Dual-Issue MIPS

= More instructions executing in parallel

. EX data hazard
Forwardlng avoided stalls with single-issue

= Now can’t use ALU result in load/store in same packet
add $t0, $s0, S$sl
lw Ss2, 0(stO0)
= Split into two packets, effectively a stall

= | oad-use hazard
= Still one cycle use latency, but now two Instructions

= More aggressive scheduling required

BK, 8/15/2023 Faculty of Computer Science and Engineerin 136
¢ y gineering

Scheduling Example

= Schedule this for dual-issue MIPS

Loop: 1w St0, 0(Ssl) # StO=array element
addu $t0, $t0, $s2 # add scalar in Ss2
SwW St0, 0(Ssl) # Store result
addi S$s1, $sl1,-4 #
#

bne sl, SSzero, Loop

decrement pointer
branch $s1!=0

ALU/branch Load/store cycle
Loop: | nop lw $t0, 0($sl) |1
addi $sl1, S$s1,-4 nop 2
addu $t0, $t0, $s2 nop 3
bne sl, SSzero, Loop |sw $t0, 0(S$sl) |4

= [IPC =5/4=1.25 (c.f. peak IPC = 2)
& 8/15/2023

Faculty of Computer Science and Engineering 137

Loop Unrolling

= Replicate loop body to expose more parallelism
= Reduces loop-control overhead

= Use different registers per replication
= (alled “register renaming”

= Avoid loop-carried “anti-dependencies”
= Store followed by a load of the same register

= Aka "name dependence”
= Reuse of a register name

& 8/15/2023 Faculty of Computer Science and Engineering 138

Loop Unrolling Example

= IPC=14/8=1.75

= (loser to 2, but at cost of registers and code size

ALU/branch Load/store cycle
Loop: |addi $sl1, $sl1,-16 lw St0, 0(S$sl) 1
nop lw Stl, 12($sl) 2
addu $t0, $t0, S$s2 lw St2, 8($sl) 3
addu $tl1, tl, Ss2 1w St3, 4($sl) 4
addu $t2, $t2, $s2 sSwW St0, 16($sl) 5
addu $t3, $t4, $s2 sSwW Stl, 12($sl) 6
nop SW St2, 8(S$sl) 7
bne $sl, $zero, Loop |sw St3, 4($sl) 8

& 8/15/2023

Faculty of Computer Science and Engineering

139

Dynamic Multiple Issue

= “Superscalar” processors
= CPU decides whether to issue O, 1, 2, ... each
cycle
" Avoliding structural and data hazards
= Avoids the need for compiler scheduling

= Though it may still help
= Code semantics ensured by the CPU

& 8/15/2023 Faculty of Computer Science and Engineering 140

Dynamic Pipeline Scheduling

= Allow the CPU to execute instructions out of
order to avoid stalls

= But commit result to registers In order

= Example
lw st0, 20 (Ss2)
addu stl, S$t0, St2
sub $s4, S$s4, $t3
slti $t5, $s4, 20
= (Can start sub while addu is waiting for Iw

& 8/15/2023 Faculty of Computer Science and Engineering 141

Dynamically Scheduled CPU

y i i y

Reservation Reservation Reservation Reservation/
station station T station station

Functional } } Floatin Load- | oyt of order execute
units JiEefs JuiEefs point store
4) -

uni

& 8/15/2023 Faculty of Computer Science and Engineering 142

Register Renaming

= Reservation stations and reorder buffer effectively
provide register renaming

= On Instruction issue to reservation station

* [f operand is available in register file or reorder buffer
= (Copied to reservation station
= No longer required In the register; can be overwritten
* [f operand is not yet available
= It will be provided to the reservation station by a function
unit
= Register update may not be required

& 8/15/2023 Faculty of Computer Science and Engineering 143

Speculation

= Predict branch and continue issuing
= Don’t commit until branch outcome determined

= [oad speculation

= Avoid load and cache miss delay
= Predict the effective address
= Predict loaded value
= Load before completing outstanding stores
= Bypass stored values to load unit

= Don’'t commit load until speculation cleared

BK, 8/15/2023 Faculty of Computer Science and Engineerin 144
¢ y gineering

Why Do Dynamic Scheduling?

= Why not just let the compiler schedule code?

= Not all stalls are predicable
" e.g., cache misses

= Can't always schedule around branches
= Branch outcome is dynamically determined

= Different implementations of an ISA have
different latencies and hazards

BK, 8/15/2023 Faculty of Computer Science and Engineerin 145
¢ y gineering

Does Multiple Issue Work?

Yes, but not as much as we’d like
Programs have real dependencies that limit ILP

Some dependencies are hard to eliminate
= e.g., pointer aliasing

Some parallelism iIs hard to expose
= Limited window size during instruction issue

Memory delays and limited bandwidth
= Hard to keep pipelines full

Speculation can help if done well

BK, 8/15/2023 Faculty of Computer Science and Engineerin
¢ y gineering

146

Fallacies

= Pipelining is easy (!
= The basic idea Is easy

= The devil is In the detalls
= e.g. detecting data hazards

= Pipelining is independent of technology
= So why haven't we always done pipelining?

= More transistors make more advanced techniques
feasible

= Pipeline-related ISA design needs to take account of
technology trends

= e.g. predicated instructions

& 8/15/2023 Faculty of Computer Science and Engineering 148

Pitfalls

= Poor ISA design can make pipelining harder

= e.g., complex instruction sets (VAX, |1A-32)

= Significant overhead to make pipelining work

" |A-32 micro-op approach
= e.g., complex addressing modes

= Register update side effects, memory indirection
" e.g., delayed branches

= Advanced pipelines have long delay slots

& 8/15/2023 Faculty of Computer Science and Engineering 149

Concluding Remarks

= |SA influences design of datapath and control
= Datapath and control influence design of ISA

= Pipelining improves instruction throughput
using parallelism

= More Instructions completed per second
= |atency for each instruction not reduced

» Hazards: structural, data, control

= Multiple issue and dynamic scheduling (ILP)
» Dependencies limit achievable parallelism
= Complexity leads to the power wall

& 8/15/2023 Faculty of Computer Science and Engineering 150

	Slide 1: Chapter 4: The Processor
	Slide 2: This chapter contents
	Slide 3: This chapter outcomes
	Slide 4: Introduction
	Slide 5: The simplified processor.
	Slide 6: MIPS Instruction Execution Cycle
	Slide 7: Instruction Execution
	Slide 8: CPU Overview
	Slide 9: Multiplexers
	Slide 10: Control
	Slide 11: Logic Design Basics
	Slide 12: Combinational Elements
	Slide 13: Sequential Elements
	Slide 14: Sequential Elements
	Slide 15: Clocking Methodology
	Slide 16: Building a Datapath
	Slide 17: Instruction type (review)
	Slide 18: Instruction Fetch
	Slide 19: Instruction Fetch (cont.)
	Slide 20: R-Format Instructions
	Slide 21: R-Format Instructions (example)
	Slide 22: Your turn
	Slide 23: Load/Store Instructions
	Slide 24: Branch Instructions
	Slide 25: Branch Instructions
	Slide 26: Composing the Elements
	Slide 27: R-Type/Load/Store Datapath
	Slide 28: R-Type/Load/Store Datapath
	Slide 29: R-Type/Load/Store Datapath
	Slide 30: Full Datapath
	Slide 31: ALU Control
	Slide 32: Closer look at a 1-bit ALU
	Slide 33: Closer look at a 1-bit ALU
	Slide 34: ALU Control
	Slide 35: The Main Control Unit
	Slide 36: Datapath With Control
	Slide 37: R-Type Instruction
	Slide 38: Load Instruction
	Slide 39: Branch-on-Equal Instruction
	Slide 40: Exercise
	Slide 41: Implementing Jumps
	Slide 42: Datapath With Jumps Added
	Slide 43: Performance Issues
	Slide 44: Your turn
	Slide 45: Pipelining Analogy
	Slide 46: MIPS Pipeline
	Slide 47: Pipeline Performance
	Slide 48: Pipeline Performance
	Slide 49: Pipeline Speedup
	Slide 50: Pipelining and ISA Design
	Slide 51: Hazards
	Slide 52: Structure Hazards
	Slide 53: Structure Hazards
	Slide 54: Data Hazards
	Slide 55: Data Hazards (bubble, stall, delay)
	Slide 56: Forwarding (aka Bypassing)
	Slide 57: Pipeline visualization
	Slide 58: How many stalls?
	Slide 59: Load-Use Data Hazard
	Slide 60: Code Scheduling to Avoid Stalls
	Slide 61: How many stalls? And …
	Slide 62: Control Hazards
	Slide 63: Stall on Branch
	Slide 64: Branch Prediction
	Slide 65: MIPS with Predict Not Taken
	Slide 66: More-Realistic Branch Prediction
	Slide 67: Pipeline Summary
	Slide 68: Single clock cycle vs Pipeline vs Multiple clock cycle
	Slide 69: Multiple clock cycle
	Slide 70: MIPS Pipelined Datapath
	Slide 71: Pipeline registers
	Slide 72: Pipeline Operation
	Slide 73: IF for Load, Store, …
	Slide 74: ID for Load, Store, …
	Slide 75: EX for Load
	Slide 76: MEM for Load
	Slide 77: WB for Load
	Slide 78: Corrected Datapath for Load
	Slide 79: EX for Store
	Slide 80: MEM for Store
	Slide 81: WB for Store
	Slide 82: Multi-Cycle Pipeline Diagram
	Slide 83: Single-Cycle Pipeline Diagram
	Slide 84: Pipelined Control (Simplified)
	Slide 85: Pipelined Control
	Slide 86: Pipelined Control
	Slide 87: Data Hazards in ALU Instructions
	Slide 88: Dependencies & Forwarding
	Slide 89: Detecting the Need to Forward
	Slide 90: Detecting the Need to Forward
	Slide 91: No Forwarding
	Slide 92: Forwarding Path
	Slide 93: Forwarding Conditions
	Slide 94: Forwarding Conditions
	Slide 95: Double Data Hazard
	Slide 96: Revised Forwarding Condition
	Slide 97: Datapath with Forwarding
	Slide 98: Load-Use Data Hazard
	Slide 99: Load-Use Hazard Detection
	Slide 100: How to Stall the Pipeline
	Slide 101: Load-Use Data Hazard
	Slide 102: Datapath with Hazard Detection
	Slide 103: Stalls and Performance
	Slide 104: Branch Hazards
	Slide 105: Reducing Branch Delay
	Slide 106: Example: Branch Taken (clock 3)
	Slide 107: Example: Branch Taken (clock 4)
	Slide 108: Data Hazards for Branches
	Slide 109: Data Hazards for Branches
	Slide 110: Data Hazards for Branches
	Slide 111: Dynamic Branch Prediction
	Slide 112: 1-Bit Predictor: Shortcoming
	Slide 113: 2-Bit Predictor
	Slide 114: Calculating the Branch Target
	Slide 115: Exceptions and Interrupts
	Slide 116: Handling Exceptions
	Slide 117: An Alternate Mechanism
	Slide 118: Handler Actions
	Slide 119: Exceptions in a Pipeline
	Slide 120: Pipeline with Exceptions
	Slide 121: Exception Properties
	Slide 122: Exception Example
	Slide 123: Exception Example (clock 6)
	Slide 124: Exception Example (clock 7)
	Slide 125: Multiple Exceptions
	Slide 126: Imprecise Exceptions
	Slide 127: Instruction-Level Parallelism (ILP)
	Slide 128: Multiple Issue
	Slide 129: Speculation
	Slide 130: Compiler/Hardware Speculation
	Slide 131: Speculation and Exceptions
	Slide 132: Static Multiple Issue
	Slide 133: Scheduling Static Multiple Issue
	Slide 134: MIPS with Static Dual Issue
	Slide 135: MIPS with Static Dual Issue
	Slide 136: Hazards in the Dual-Issue MIPS
	Slide 137: Scheduling Example
	Slide 138: Loop Unrolling
	Slide 139: Loop Unrolling Example
	Slide 140: Dynamic Multiple Issue
	Slide 141: Dynamic Pipeline Scheduling
	Slide 142: Dynamically Scheduled CPU
	Slide 143: Register Renaming
	Slide 144: Speculation
	Slide 145: Why Do Dynamic Scheduling?
	Slide 146: Does Multiple Issue Work?
	Slide 148: Fallacies
	Slide 149: Pitfalls
	Slide 150: Concluding Remarks

