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This chapter contents 

▪ Memory technology/ hierarchy

▪ Cache and Virtual Memory

▪ Memory performance



This chapter outcomes

Students who complete this course will be 
able to
▪ Explain the structure of a memory hierarchy.

▪ Deeply understand how Memory, Cache, and 
Virtual Memory work at the hardware level.

▪ Estimate the performance of a memory 
hierarchy as well as a system.
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Principle of Locality

▪ Programs access a small proportion of their address 
space at any time
▪ Temporal locality
▪ Items accessed recently are likely to be accessed again 

soon
▪ e.g., instructions in a loop, induction variables

▪ Spatial locality
▪ Items near those accessed recently are likely to be 

accessed soon
▪ E.g., sequential instruction access, array data
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Warm up

for (int i = 0; i < MAX_SIZE; i ++){

Sum += Array[i];

}

▪ Which variables/instructions exhibit 
temporal locality?

▪ Which variables /instructions exhibit spatial 
locality?
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Taking Advantage of Locality

▪ Memory hierarchy

▪ Store everything on disk

▪ Copy recently accessed (and nearby) items from 
disk to smaller DRAM memory
▪ Main memory

▪ Copy more recently accessed (and nearby) 
items from DRAM to smaller SRAM memory
▪ Cache memory attached to CPU
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Memory Hierarchy Levels

▪ Block (aka line): unit of copying
▪ May be multiple words

▪ If accessed data is present in upper level
▪ Hit: access satisfied by upper level

▪ Hit ratio: hits/accesses

▪ If accessed data is absent
▪ Miss: block copied from lower level

▪ Time taken: miss penalty
▪ Miss ratio: misses/accesses

= 1 – hit ratio
▪ Then accessed data supplied from upper 

level
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Memory Technology

▪ Static RAM (SRAM)
▪ 0.5ns – 2.5ns, $500 – $1000 per GiB

▪ Dynamic RAM (DRAM)
▪ 50ns – 70ns, $10 – $20 per GiB

▪ Flash
▪ 5µs – 50 µs, $0.75 - $1.00 per GiB

▪ Magnetic disk
▪ 5ms – 20ms, $0.05 – $0.10 per GiB

▪ Ideal memory
▪ Access time of SRAM
▪ Capacity and cost/GB of disk
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Dynamic RAM (DRAM) cell
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Static RAM (SRAM) cell
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DRAM Technology

▪ Data stored as a charge in a capacitor
▪ Single transistor used to access the charge
▪ Must periodically be refreshed
▪ Read contents and write back
▪ Performed on a DRAM “row”
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Advanced DRAM Organization

▪ Bits in a DRAM are organized as a rectangular 
array
▪ DRAM accesses an entire row
▪ Burst mode: supply successive words from a row 

with reduced latency

▪ Double data rate (DDR) DRAM
▪ Transfer on rising and falling clock edges

▪ Quad data rate (QDR) DRAM
▪ Separate DDR inputs and outputs
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DRAM Generations
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Year Capacity $/GB

1980 64Kbit $1500000

1983 256Kbit $500000

1985 1Mbit $200000

1989 4Mbit $50000

1992 16Mbit $15000

1996 64Mbit $10000

1998 128Mbit $4000

2000 256Mbit $1000

2004 512Mbit $250

2007 1Gbit $50

2010 2Gbit $30

2012 4Gbit $1
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DRAM Performance Factors

▪ Row buffer
▪ Allows several words to be read and refreshed in 

parallel

▪ Synchronous DRAM
▪ Allows for consecutive accesses in bursts without 

needing to send each address
▪ Improves bandwidth

▪ DRAM banking
▪ Allows simultaneous access to multiple DRAMs
▪ Improves bandwidth
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Main Memory Supporting Caches

▪ Use DRAMs for main memory 
▪ Fixed width (e.g., 1 word) 
▪ Connected by fixed-width clocked bus 
▪ Bus clock is typically slower than CPU clock 

▪ Example cache block read 
▪ 1 bus cycle for address transfer 
▪ 15 bus cycles per DRAM access 
▪ 1 bus cycle per data transfer 
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Increasing Memory Bandwidth
▪ For 4-word block, 1-word-wide 
DRAM 

▪ Miss penalty = 1 + 4×15 + 4×1 = 65 
bus cycles 

▪ Bandwidth = 16 bytes / 65 cycles = 
0.25 B/cycle 

▪ 4-word wide memory

▪ Miss penalty = 1 + 15 + 1 = 17 bus 
cycles

▪ Bandwidth = 16 bytes / 17 cycles = 
0.94 B/cycle

▪ 4-bank interleaved memory

▪ Miss penalty = 1 + 15 + 4×1 = 20 bus 
cycles

▪ Bandwidth = 16 bytes / 20 cycles = 
0.8 B/cycle
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Flash Storage

▪ Nonvolatile semiconductor storage
▪ 100× – 1000× faster than disk

▪ Smaller, lower power, more robust

▪ But more $/GB (between disk and DRAM)
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Flash Types

▪ NOR flash: bit cell like a NOR gate
▪ Was first introduced by Intel in 1988
▪ Random read/write access
▪ Used for instruction memory in embedded systems

▪ NAND flash: bit cell like a NAND gate (SSD)
▪ Was introduced by Toshiba in 1989
▪ Denser (bits/area), but block-at-a-time access
▪ Cheaper per GB
▪ Used for USB keys, media storage, …

▪ Flash bits wears out after 1000’s of accesses
▪ Not suitable for direct RAM or disk replacement
▪ Wear leveling: remap data to less used blocks
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Disk Storage

▪ Nonvolatile, rotating magnetic storage
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Disk Sectors and Access

▪ Each sector records
▪ Sector ID
▪ Data (512 bytes, 4096 bytes proposed)
▪ Error correcting code (ECC)

▪ Used to hide defects and recording errors
▪ Synchronization fields and gaps

▪ Access to a sector involves
▪ Queuing delay if other accesses are pending
▪ Seek: move the heads
▪ Rotational latency
▪ Data transfer
▪ Controller overhead
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Disk Access Example

▪ Given
▪ 512B sector, 15,000rpm, 4ms average seek time, 100MB/s 

transfer rate, 0.2ms controller overhead, idle disk

▪ Average read time
▪ 4ms seek time

+ ½ / (15,000/60) = 2ms rotational latency
+ 512 / 100MB/s = 0.005ms transfer time
+ 0.2ms controller delay
= 6.2ms

▪ If actual average seek time is 1ms
▪ Average read time = 3.2ms
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Disk Performance Issues

▪ Manufacturers quote average seek time
▪ Based on all possible seeks
▪ Locality and OS scheduling lead to smaller actual average 

seek times

▪ Smart disk controller allocate physical sectors on disk
▪ Present logical sector interface to host
▪ SCSI, ATA, SATA

▪ Disk drives include caches
▪ Prefetch sectors in anticipation of access
▪ Avoid seek and rotational delay
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Cache Memory

▪ Cache memory
▪ The level of the memory hierarchy 

closest to the CPU

▪ Given accesses X1, …, Xn–1, Xn

▪ How do we know if the data is 
present?

▪ Where do we look?
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Direct Mapped Cache

▪ Location determined by address

▪ Direct mapped: only one choice
▪ (Block address) modulo (#Blocks in cache)

▪ #Blocks is a power of 2

▪ Use low-order address bits
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Addressing - offset

▪ Offset
▪ Determined the position 

(offset) of data in a block(line).

▪ Byte offset, half-word offset, 
word offset.
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Tag Index Offset

031

# bits# bits# bits

…

x …

a …

…

x

a

Given 8-byte block (line)

→ offset of x = 2

→ offset of a = 5

MEMORY
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Addressing - index

▪ Index
▪ Determined the position of a 

set in a cache
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Tag Index Offset

031

# bits# bits# bits

…

x …

a …

…

Idx 0 Idx 1 Idx 2 Idx 3 Idx 4 Idx 5 Idx 6 Idx 7 Idx 0 Idx 7

x

a

Idx 0 Idx 1 Idx 2 Idx 3 Idx 4 Idx 5 Idx 6 Idx 7
Given 8-block cache

→ Index of x, a = 0
MEMORY

Cache



Addressing - Tag

▪ Tag
▪ Determined which block ID is 

stored at specific index in a 
cache
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Tag Index Offset

031

# bits# bits# bits

Tag 0 Tag 0 Tag 0 Tag 0 Tag 0 Tag 0 Tag 0 Tag 0 Tag 1 … Tag n

…

x …

a …

…

Idx 0 Idx 1 Idx 2 Idx 3 Idx 4 Idx 5 Idx 6 Idx 7 Idx 0 Idx 7

Tag 1 Tag 0

x

a

Idx 0 Idx 1 Idx 2 Idx 3 Idx 4 Idx 5 Idx 6 Idx 7

Cache

Block Id = {Tag, Idx}

blockID of x, a = 8

Tag of x, a = 1

MEMORY



Addressing - Tag

▪ Tag
▪ Determined which block ID is 

stored at specific index in a 
cache
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Tag Index Offset

031

# bits# bits# bits
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b

c
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Cache

Block Id = {Tag, Idx}

blockID of b, c = 0

Tag of b, c = 0

MEMORY



Your turn

▪ What are physical address of x, a?

▪ What are the Tag, Index, and Byte Offset of 
a variable where its address is 0x01020304
(Hex)
▪ Use the configuration in the previous slide 
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Your turn

▪ What are the Tag, Index, Byte Offset, and 
BlockID of a variable where its address is 
0x10203040 (Hex)
▪ Direct mapped

▪ 32-word block

▪ 64-block cache
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Tags and Valid Bits

▪ How do we know which particular block is stored in 
a cache location?
▪ Store block address as well as the data
▪ Actually, only need the high-order bits
▪ Called the tag

▪ What if there is no data in a location?
▪ Valid bit
▪ 1 = present.
▪ 0 = not present.

▪ Initially 0
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Miss/Hit ratio

▪ What are address of a, b, c, …

▪ What are

Tag/Index of

a, b, c, ...
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a z …

d c i …

b g …

h …
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+0 +1

+2 +3

+4 +5
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Miss/Hit ratio

▪ After executing the given piece

of C code. What is miss/hit ratio?

▪ a = b + c;

▪ d = a + i;

▪ g= h + z;

▪ b = a + c;

▪ d = i + h;

All variable are 1-byte type.

In form of statement a = b + c; suppose that b read first, then c then a.
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Cache Example

▪ 8-blocks, 1 word/block, direct mapped

▪ Initial state

▪ Access word address:

22, 26, 22, 26, 16, 3, 16, 18
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Cache Example

▪ 22
▪ 26
▪ 22
▪ 26
▪ 16
▪ 3
▪ 16
▪ 18
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Index V Tag Data

000 N

001 N

010 N

011 N

100 N

101 N

110 Y 10 Mem[10110]

111 N

Word addr Binary addr Hit/miss Cache block

22 10 110 Miss 110



Cache Example

▪ 22
▪ 26
▪ 22
▪ 26
▪ 16
▪ 3
▪ 16
▪ 18
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Index V Tag Data

000 N

001 N

010 Y 11 Mem[11010]

011 N

100 N

101 N

110 Y 10 Mem[10110]

111 N

Word addr Binary addr Hit/miss Cache block

26 11 010 Miss 010



Cache Example

▪ 22
▪ 26
▪ 22
▪ 26
▪ 16
▪ 3
▪ 16
▪ 18
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Index V Tag Data

000 N

001 N

010 Y 11 Mem[11010]

011 N

100 N

101 N

110 Y 10 Mem[10110]

111 N

Word addr Binary addr Hit/miss Cache block

22 10 110 Hit 110

26 11 010 Hit 010



Cache Example

▪ 22
▪ 26
▪ 22
▪ 26
▪ 16
▪ 3
▪ 16
▪ 18
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Index V Tag Data

000 Y 10 Mem[10000]

001 N

010 Y 11 Mem[11010]

011 Y 00 Mem[00011]

100 N

101 N

110 Y 10 Mem[10110]

111 N

Word addr Binary addr Hit/miss Cache block

16 10 000 Miss 000

3 00 011 Miss 011

16 10 000 Hit 000



Cache Example

▪ 22
▪ 26
▪ 22
▪ 26
▪ 16
▪ 3
▪ 16
▪ 18
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Index V Tag Data

000 Y 10 Mem[10000]

001 N

010 Y 10 Mem[10010]

011 Y 00 Mem[00011]

100 N

101 N

110 Y 10 Mem[10110]

111 N

Word addr Binary addr Hit/miss Cache block

18 10 010 Miss 010



Your turn

▪ What is Hit/Miss ratio when a processor 
accesses a sequence of byte address: 1, 4, 2, 
12, 3, 32, 0, 33, 1, 44

11/13/2023 Faculty of Computer Science and Engineering 40



Address Subdivision
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Address (showing bit positions)

Data

Hit

Data

Tag

Valid    Tag

3220

Index

0

1

2

1023

1022

1021

=

Index

20 10

Byte
offset

30 13 12 11 2 1 031



Example: Larger Block Size

▪ 64 blocks, 16 bytes/block
▪ To what block number does address 1200 

map?

▪ Block address = 1200/16 = 75

▪ Block number (ID) = 75 modulo 64 = 11
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Tag Index Offset

03491031

4 bits6 bits22 bits



Block Size Considerations

▪ Larger blocks should reduce miss rate
▪ Due to spatial locality

▪ But in a fixed-sized cache
▪ Larger blocks  fewer of them
▪ More competition  increased miss rate

▪ Larger blocks  pollution (much unnecessarily 
data)

▪ Larger miss penalty
▪ Can override benefit of reduced miss rate
▪ Early restart and critical-word-first can help
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Cache Misses

▪ On cache hit, CPU proceeds normally

▪ On cache miss
▪ Stall the CPU pipeline
▪ Fetch block from next level of hierarchy
▪ Instruction cache miss
▪ Restart instruction fetch

▪ Data cache miss
▪ Complete data access
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Write-Through

▪ On data-write hit, could just update the block in cache
▪ But then cache and memory would be inconsistent

▪ Write through: also update memory

▪ But makes writes take longer
▪ e.g., if base CPI = 1, 10% of instructions are stores, write to 

memory takes 100 cycles
▪ Effective CPI = 1 + 0.1×100 = 11

▪ Solution: write buffer
▪ Holds data waiting to be written to memory
▪ CPU continues immediately

▪ Only stalls on write if write buffer is already full
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Write-Back

▪ Alternative: On data-write hit, just update 
the block in cache
▪ Keep track of whether each block is dirty

▪ When a dirty block is replaced
▪ Write it back to memory

▪ Can use a write buffer to allow replacing block 
to be read first
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Write Allocation

▪ What should happen on a write miss?
▪ Alternatives for write-through
▪ Allocate on miss (write allocate or fetch-on write): 

fetch the block
▪ Write around (write-no-allocate): don’t fetch the 

block
▪ Since programs often write a whole block before 

reading it (e.g., initialization)

▪ For write-back
▪ Usually fetch the block
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Cache coherence
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Example: Intrinsity FastMATH

▪ Embedded MIPS processor
▪ 12-stage pipeline
▪ Instruction and data access on each cycle

▪ Split cache: separate I-cache and D-cache
▪ Each 16KB: 256 blocks × 16 words/block
▪ D-cache: write-through or write-back

▪ SPEC2000 miss rates
▪ I-cache: 0.4%
▪ D-cache: 11.4%
▪ Weighted average: 3.2%
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Example: Intrinsity FastMATH
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32

18

=

Mux

3232 32

Address (showing bit positions)

Data
Hit

Data

Tag

V Tag

Index

18 8 Byte
offset

1314 2 1 031 65

4

Block offset

256
entries

512bitsbits18



Measuring Cache Performance

▪ Components of CPU time
▪ Program execution cycles

▪ Includes cache hit time
▪ Memory stall cycles

▪ Mainly from cache misses

▪ With simplifying assumptions:
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penalty Miss
nInstructio

Misses

Program

nsInstructio

penalty Missrate Miss
Program

accessesMemory 

cycles stallMemory 
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I-cache, D-cache
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Data

Instruction
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Data

cache

Instruction 

memory

Data
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I-cache, D-cache Miss

▪ I-cache Miss

▪ D-cache Miss
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REG ALU DMIM Stall Stall Stall…. REGDM

REG ALU REGDMIMIM Stall Stall Stall….

Instruction fetch: 

NOT FOUND

data access:

NOT FOUND



Cache Performance Example

▪ Given
▪ I-cache miss rate = 2%
▪ D-cache miss rate = 4%
▪ Miss penalty = 100 cycles
▪ Base CPI (ideal cache) = 2
▪ Load & stores are 36% of instructions

▪ Miss cycles per instruction
▪ I-cache: 0.02 × 100 = 2
▪ D-cache: 0.36 × 0.04 × 100 = 1.44

▪ Actual CPI = 2 + 2 + 1.44 = 5.44
▪ Ideal CPU is 5.44/2 =2.72 times faster

11/13/2023 Faculty of Computer Science and Engineering 54



Average Access Time

▪ Hit time is also important for performance

▪ Average memory access time (AMAT)
▪ AMAT = Hit time + Miss rate × Miss penalty

▪ Example
▪ CPU with 1ns clock, hit time = 1 cycle, miss 

penalty = 20 cycles, I-cache miss rate = 5%
▪ AMAT = 1 + 0.05 × 20 = 2ns
▪ 2 cycles per instruction

11/13/2023 Faculty of Computer Science and Engineering 55



Performance Summary

▪ When CPU performance increased
▪ Miss penalty becomes more significant

▪ Decreasing base CPI
▪ Greater proportion of time spent on memory stalls

▪ Increasing clock rate
▪ Memory stalls account for more CPU cycles

▪ Can’t neglect cache behavior when evaluating 
system performance
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Associative Caches

▪ Fully associative
▪ Allow a given block to go in any cache entry
▪ Requires all entries to be searched at once
▪ Comparator per entry (expensive)

▪ n-way set associative
▪ Each set contains n entries
▪ Block number determines which set
▪ (Block number) modulo (#Sets in cache)

▪ Search all entries in a given set at once
▪ n comparators (less expensive)
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Associative Cache Example
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Direct mapped Set associative Fully associative

Set   #     0  1 2  3  4 5 6 7 Set #     0     1      2     3

Data

Tag

Search

1

2

Data

Tag

Search

1

2

Data

Tag

Search

1

2



Your turn

▪ Given a configuration of cache system
▪ 32-word block
▪ 128-Kbyte cache.
▪ 4G RAM

▪ How wide are Tag, Index, and Byte Offset fields for:
▪ Direct mapped
▪ 4-way set associative
▪ Fully associative

▪ Given int A at 0x12345678. What are Tag, Index, 
word offset of A for each configuration?
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Spectrum of Associativity

▪ For a cache with 8 entries
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Associativity Example

▪ Compare 4-block caches
▪ Direct mapped, 2-way set associative,

fully associative
▪ Block access sequence: 0, 8, 0, 6, 8

▪ Direct mapped (100% Miss)
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Block 

address

Cache 

index

Hit/miss Cache content after access

0 1 2 3

0 0 miss Mem[0]

8 0 miss Mem[8]

0 0 miss Mem[0]

6 2 miss Mem[0] Mem[6]

8 0 miss Mem[8] Mem[6]



Associativity Example

▪ 2-way set associative (80% Miss)

▪ Fully associative (60% Miss)
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Block 

address

Cache 

index

Hit/miss Cache content after access

Set 0 Set 1

0 0 miss Mem[0]

8 0 miss Mem[0] Mem[8]

0 0 hit Mem[0] Mem[8]

6 0 miss Mem[0] Mem[6]

8 0 miss Mem[8] Mem[6]

Block 

address

Hit/miss Cache content after access

0 miss Mem[0]

8 miss Mem[0] Mem[8]

0 hit Mem[0] Mem[8]

6 miss Mem[0] Mem[8] Mem[6]

8 hit Mem[0] Mem[8] Mem[6]



How Much Associativity

▪ Increased associativity decreases miss rate
▪ But with diminishing returns

▪ Simulation of a system with 64KB D-cache, 
16-word blocks, SPEC2000
▪ 1-way: 10.3%
▪ 2-way: 8.6%
▪ 4-way: 8.3%
▪ 8-way: 8.1%
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Set Associative Cache Organization
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=

4-to-1 multiplexor

= = =

DataHit

Address

Data

Tag

V  Tag

Index

22 8

2 1 311 10 9 123031 8 0

Index
0
1
2

253
254
255

DataV  Tag DataV  Tag DataV  Tag

22 32



Replacement Policy

▪ Direct mapped: no choice

▪ Set associative
▪ Prefer non-valid entry, if there is one
▪ Otherwise, choose among entries in the set

▪ Least-recently used (LRU)
▪ Choose the one unused for the longest time

▪ Simple for 2-way, manageable for 4-way, too hard beyond that

▪ Random
▪ Gives approximately the same performance as LRU for high 

associativity
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Multilevel Caches

▪ Primary cache attached to CPU
▪ Small, but fast

▪ Level-2 cache services misses from primary 
cache
▪ Larger, slower, but still faster than main 

memory

▪ Main memory services L-2 cache misses

▪ Some high-end systems include L-3 cache
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Multilevel Cache Example

▪ Given
▪ CPU base CPI = 1, clock rate = 4GHz

▪ Miss rate/instruction = 2%

▪ Main memory access time = 100ns

▪ With just primary cache
▪ Miss penalty = 100ns/0.25ns = 400 cycles

▪ Effective CPI = 1 + 0.02 × 400 = 9
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Multilevel Cache Example (cont.)

▪ Now add L-2 cache
▪ Access time = 5ns
▪ Global miss rate to main memory = 0.5%

▪ Primary miss with L-2 hit
▪ Penalty = 5ns/0.25ns = 20 cycles

▪ Primary miss with L-2 miss
▪ Extra penalty = 500 cycles

▪ CPI = 1 + 0.02 × 20 + 0.005 × 400 = 3.4
▪ Performance ratio = 9/3.4 = 2.6
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Multilevel Cache Considerations

▪ Primary cache
▪ Focus on minimal hit time

▪ L-2 cache
▪ Focus on low miss rate to avoid main memory 

access
▪ Hit time has less overall impact

▪ Results
▪ L-1 cache usually smaller than a single cache
▪ L-1 block size smaller than L-2 block size
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Interactions with Advanced CPUs

▪ Out-of-order CPUs can execute instructions 
during cache miss
▪ Pending store stays in load/store unit

▪ Dependent instructions wait in reservation stations

▪ Independent instructions continue

▪ Effect of miss depends on program data flow
▪ Much harder to analyse

▪ Use system simulation

11/13/2023 Faculty of Computer Science and Engineering 70



Virtual Machines

▪ Host computer emulates guest operating system and 
machine resources
▪ Improved isolation of multiple guests
▪ Avoids security and reliability problems
▪ Aids sharing of resources

▪ Virtualization has some performance impact
▪ Feasible with modern high-performance computers

▪ Examples: (Operating) System Virtual Machines
▪ IBM VM/370 (1970s technology!)
▪ VMWare
▪ Microsoft Virtual PC
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Virtual Machine Monitor (hypervisor)

▪ Maps virtual resources to physical resources
▪ Memory, I/O devices, CPUs

▪ Guest code runs on native machine in user 
mode
▪ Traps to VMM on privileged instructions and access 

to protected resources

▪ Guest OS may be different from host OS
▪ VMM handles real I/O devices
▪ Emulates generic virtual I/O devices for guest
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Virtual machine architecture
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Example: Timer Virtualization

▪ In native machine, on timer interrupt
▪ OS suspends current process, handles interrupt, selects 

and resumes next process

▪ With Virtual Machine Monitor
▪ VMM suspends current VM, handles interrupt, selects 

and resumes next VM

▪ If a VM requires timer interrupts
▪ VMM emulates a virtual timer
▪ Emulates interrupt for VM when physical timer 

interrupt occurs
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Instruction Set Support

▪ User and System modes

▪ Privileged instructions only available in system mode
▪ Trap to system if executed in user mode

▪ All physical resources only accessible using 
privileged instructions
▪ Including page tables, interrupt controls, I/O registers

▪ Renaissance of virtualization support
▪ Current ISAs (e.g., x86) adapting
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Virtual Memory

▪ Use main memory as a “cache” for secondary (disk) storage
▪ Managed jointly by CPU hardware and the operating system (OS)

▪ Programs share main memory
▪ Each gets a private virtual address space holding its frequently used 

code and data
▪ Protected from other programs

▪ CPU and OS translate virtual addresses to physical addresses
▪ VM “block” is called a page
▪ VM translation “miss” is called a page fault
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Address Translation

▪ Fixed-size pages (e.g., 4K)
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Page Fault Penalty

▪ On page fault, the page must be fetched 
from disk
▪ Takes millions of clock cycles

▪ Handled by OS code

▪ Try to minimize page fault rate
▪ Fully associative placement

▪ Smart replacement algorithms

11/13/2023 Faculty of Computer Science and Engineering 78



Page Tables

▪ Stores placement information
▪ Array of page table entries, indexed by virtual page 

number
▪ Page table register in CPU points to page table in 

physical memory

▪ If page is present in memory
▪ PTE stores the physical page number
▪ Plus other status bits (referenced, dirty, …)

▪ If page is not present
▪ PTE can refer to location in swap space on disk
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Translation Using a Page Table
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Mapping Pages to Storage
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Replacement and Writes

▪ To reduce page fault rate, prefer least-recently used 
(LRU) replacement
▪ Reference bit (aka use bit) in PTE set to 1 on access to page
▪ Periodically cleared to 0 by OS
▪ A page with reference bit = 0 has not been used recently

▪ Disk writes take millions of cycles
▪ Block at once, not individual locations
▪ Write through is impractical
▪ Use write-back
▪ Dirty bit in PTE set when page is written
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Fast Translation Using a TLB

▪ Translation-lookaside buff er

▪ Address translation would appear to require extra 
memory references
▪ One to access the PTE
▪ Then the actual memory access

▪ But access to page tables has good locality
▪ So use a fast cache of PTEs within the CPU
▪ Called a Translation Look-aside Buffer (TLB)
▪ Typical: 16–512 PTEs, 0.5–1 cycle for hit, 10–100 cycles for 

miss, 0.01%–1% miss rate
▪ Misses could be handled by hardware or software
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Fast Translation Using a TLB
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TLB Misses

▪ If page is in memory
▪ Load the PTE from memory and retry
▪ Could be handled in hardware
▪ Can get complex for more complicated page table 

structures
▪ Or in software
▪ Raise a special exception, with optimized handler

▪ If page is not in memory (page fault)
▪ OS handles fetching the page and updating the page 

table
▪ Then restart the faulting instruction
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TLB Miss Handler

▪ TLB miss indicates
▪ Page present, but PTE not in TLB
▪ Page not preset

▪ Must recognize TLB miss before destination 
register overwritten
▪ Raise exception

▪ Handler copies PTE from memory to TLB
▪ Then restarts instruction
▪ If page not present, page fault will occur
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Page Fault Handler

▪ Use faulting virtual address to find PTE

▪ Locate page on disk

▪ Choose page to replace
▪ If dirty, write to disk first

▪ Read page into memory and update page table

▪ Make process runnable again
▪ Restart from faulting instruction
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TLB and Cache Interaction

▪ If cache tag uses 
physical address
▪ Need to translate 

before cache lookup

▪ Alternative: use virtual 
address tag
▪ Complications due to 

aliasing
▪ Different virtual 

addresses for shared 
physical address
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Memory Protection

▪ Different tasks can share parts of their virtual 
address spaces
▪ But need to protect against errant access
▪ Requires OS assistance

▪ Hardware support for OS protection
▪ Privileged supervisor mode (aka kernel mode)
▪ Privileged instructions
▪ Page tables and other state information only 

accessible in supervisor mode
▪ System call exception (e.g., syscall in MIPS)
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The Memory Hierarchy

▪ Common principles apply at all levels of the 
memory hierarchy
▪ Based on notions of caching

▪ At each level in the hierarchy
▪ Block placement
▪ Finding a block
▪ Replacement on a miss
▪ Write policy
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Block Placement

▪ Determined by associativity
▪ Direct mapped (1-way associative)
▪ One choice for placement

▪ n-way set associative
▪ n choices within a set

▪ Fully associative
▪ Any location

▪ Higher associativity reduces miss rate
▪ Increases complexity, cost, and access time
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Finding a Block

▪ Hardware caches
▪ Reduce comparisons to reduce cost

▪ Virtual memory
▪ Full table lookup makes full associativity feasible
▪ Benefit in reduced miss rate
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Replacement

▪ Choice of entry to replace on a miss
▪ Least recently used (LRU)
▪ Complex and costly hardware for high 

associativity

▪ Random
▪ Close to LRU, easier to implement

▪ Virtual memory
▪ LRU approximation with hardware support
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Write Policy

▪ Write-through
▪ Update both upper and lower levels
▪ Simplifies replacement, but may require write 

buffer

▪ Write-back
▪ Update upper level only
▪ Update lower level when block is replaced
▪ Need to keep more state

▪ Virtual memory
▪ Only write-back is feasible, given disk write latency 
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Sources of Misses

▪ Compulsory misses (aka cold start misses)
▪ First access to a block

▪ Capacity misses
▪ Due to finite cache size
▪ A replaced block is later accessed again

▪ Conflict misses (aka collision misses)
▪ In a non-fully associative cache
▪ Due to competition for entries in a set
▪ Would not occur in a fully associative cache of the 

same total size
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Cache Design Trade-offs

Design 

change

Effect on miss rate Negative performance effect

Increase 

cache size

Decrease capacity 

misses

May increase access time

Increase 

associativity

Decrease conflict 

misses

May increase access time

Increase 

block size

Decrease 

compulsory misses

Increases miss penalty. For very 

large block size, may increase 

miss rate due to pollution.
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Cache Control

▪ Example cache characteristics
▪ Direct-mapped, write-back, write allocate
▪ Block size: 4 words (16 bytes)
▪ Cache size: 16 KB (1024 blocks)
▪ 32-bit byte addresses
▪ Valid bit and dirty bit per block
▪ Blocking cache
▪ CPU waits until access is complete
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Interface Signals
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Cache Coherence Problem

▪ Suppose two CPU cores share a physical 
address space
▪ Write-through caches
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Coherence Defined

▪ Informally: Reads return most recently written value

▪ Formally:
▪ P writes X; P reads X (no intervening writes)

 read returns written value
▪ P1 writes X; P2 reads X (sufficiently later)

 read returns written value
▪ c.f. CPU B reading X after step 3 in example

▪ P1 writes X, P2 writes X
 all processors see writes in the same order
▪ End up with the same final value for X
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Cache Coherence Protocols

▪ Operations performed by caches in multiprocessors to 
ensure coherence
▪ Migration of data to local caches

▪ Reduces bandwidth for shared memory
▪ Replication of read-shared data

▪ Reduces contention for access

▪ Snooping protocols
▪ Each cache monitors bus reads/writes

▪ Directory-based protocols
▪ Caches and memory record sharing status of blocks in a 

directory
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Invalidating Snooping Protocols

▪ Cache gets exclusive access to a block when it is to 
be written
▪ Broadcasts an invalidate message on the bus
▪ Subsequent read in another cache misses
▪ Owning cache supplies updated value
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Memory Consistency

▪ When are writes seen by other processors
▪ “Seen” means a read returns the written value
▪ Can’t be instantaneously

▪ Assumptions
▪ A write completes only when all processors have seen it
▪ A processor does not reorder writes with other accesses

▪ Consequence
▪ P writes X then writes Y

 all processors that see new Y also see new X
▪ Processors can reorder reads, but not writes
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Multilevel On-Chip Caches

11/13/2023 Faculty of Computer Science and Engineering 106



2-Level TLB Organization
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Supporting Multiple Issue

▪ Both have multi-banked caches that allow 
multiple accesses per cycle assuming no bank 
conflicts

▪ Core i7 cache optimizations
▪ Return requested word first
▪ Non-blocking cache
▪ Hit under miss
▪ Miss under miss

▪ Data prefetching
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Pitfalls

▪ Byte vs. word addressing
▪ Example: 32-byte direct-mapped cache,

4-byte blocks
▪ Byte 36 maps to block 1
▪ Word 36 maps to block 4

▪ Ignoring memory system effects when writing 
or generating code
▪ Example: iterating over rows vs. columns of arrays
▪ Large strides result in poor locality
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Pitfalls

▪ In multiprocessor with shared L2 or L3 cache
▪ Less associativity than cores results in conflict 

misses

▪ More cores  need to increase associativity

▪ Using AMAT to evaluate performance of out-of-
order processors
▪ Ignores effect of non-blocked accesses

▪ Instead, evaluate performance by simulation
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Pitfalls

▪ Extending address range using segments
▪ E.g., Intel 80286
▪ But a segment is not always big enough
▪ Makes address arithmetic complicated

▪ Implementing a VMM on an ISA not designed for 
virtualization
▪ E.g., non-privileged instructions accessing hardware 

resources
▪ Either extend ISA, or require guest OS not to use 

problematic instructions
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Concluding Remarks

▪ Fast memories are small, large memories are slow
▪ We really want fast, large memories 
▪ Caching gives this illusion ☺

▪ Principle of locality
▪ Programs use a small part of their memory space 

frequently

▪ Memory hierarchy
▪ L1 cache  L2 cache  …  DRAM memory

 disk

▪ Memory system design is critical for multiprocessors
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