
Computer Architecture
Faculty of Computer Science & Engineering - HCMUT

Chapter 5: Large and Fast:
Exploiting Memory Hierarchy

Binh Tran-Thanh

thanhbinh@hcmut.edu.vn

This chapter contents

▪ Memory technology/ hierarchy

▪ Cache and Virtual Memory

▪ Memory performance

This chapter outcomes

Students who complete this course will be
able to
▪ Explain the structure of a memory hierarchy.

▪ Deeply understand how Memory, Cache, and
Virtual Memory work at the hardware level.

▪ Estimate the performance of a memory
hierarchy as well as a system.

11/13/2023 Faculty of Computer Science and Engineering 3

Principle of Locality

▪ Programs access a small proportion of their address
space at any time
▪ Temporal locality
▪ Items accessed recently are likely to be accessed again

soon
▪ e.g., instructions in a loop, induction variables

▪ Spatial locality
▪ Items near those accessed recently are likely to be

accessed soon
▪ E.g., sequential instruction access, array data

11/13/2023 Faculty of Computer Science and Engineering 4

Warm up

for (int i = 0; i < MAX_SIZE; i ++){

Sum += Array[i];

}

▪ Which variables/instructions exhibit
temporal locality?

▪ Which variables /instructions exhibit spatial
locality?

11/13/2023 Faculty of Computer Science and Engineering 5

Taking Advantage of Locality

▪ Memory hierarchy

▪ Store everything on disk

▪ Copy recently accessed (and nearby) items from
disk to smaller DRAM memory
▪ Main memory

▪ Copy more recently accessed (and nearby)
items from DRAM to smaller SRAM memory
▪ Cache memory attached to CPU

11/13/2023 Faculty of Computer Science and Engineering 6

Memory Hierarchy Levels

▪ Block (aka line): unit of copying
▪ May be multiple words

▪ If accessed data is present in upper level
▪ Hit: access satisfied by upper level

▪ Hit ratio: hits/accesses

▪ If accessed data is absent
▪ Miss: block copied from lower level

▪ Time taken: miss penalty
▪ Miss ratio: misses/accesses

= 1 – hit ratio
▪ Then accessed data supplied from upper

level

11/13/2023 Faculty of Computer Science and Engineering 7

Processor

Data is

transferred

Memory Technology

▪ Static RAM (SRAM)
▪ 0.5ns – 2.5ns, $500 – $1000 per GiB

▪ Dynamic RAM (DRAM)
▪ 50ns – 70ns, $10 – $20 per GiB

▪ Flash
▪ 5µs – 50 µs, $0.75 - $1.00 per GiB

▪ Magnetic disk
▪ 5ms – 20ms, $0.05 – $0.10 per GiB

▪ Ideal memory
▪ Access time of SRAM
▪ Capacity and cost/GB of disk

11/13/2023 Faculty of Computer Science and Engineering 8

Dynamic RAM (DRAM) cell

11/13/2023 Faculty of Computer Science and Engineering 9

Source: internet

Static RAM (SRAM) cell

11/13/2023 Faculty of Computer Science and Engineering 10

Source: https://commons.wikimedia.org/wiki/File:SRAM_Cell_(6_Transistors).svg

DRAM Technology

▪ Data stored as a charge in a capacitor
▪ Single transistor used to access the charge
▪ Must periodically be refreshed
▪ Read contents and write back
▪ Performed on a DRAM “row”

11/13/2023 Faculty of Computer Science and Engineering 11

Column

Rd/Wr

Pre

Act

Row

Bank

Advanced DRAM Organization

▪ Bits in a DRAM are organized as a rectangular
array
▪ DRAM accesses an entire row
▪ Burst mode: supply successive words from a row

with reduced latency

▪ Double data rate (DDR) DRAM
▪ Transfer on rising and falling clock edges

▪ Quad data rate (QDR) DRAM
▪ Separate DDR inputs and outputs

11/13/2023 Faculty of Computer Science and Engineering 12

DRAM Generations

11/13/2023 Faculty of Computer Science and Engineering 13

Year Capacity $/GB

1980 64Kbit $1500000

1983 256Kbit $500000

1985 1Mbit $200000

1989 4Mbit $50000

1992 16Mbit $15000

1996 64Mbit $10000

1998 128Mbit $4000

2000 256Mbit $1000

2004 512Mbit $250

2007 1Gbit $50

2010 2Gbit $30

2012 4Gbit $1

250

185

135

110
90

60 60 55 50
40

150

100

40 40
30

12 10 7 5 1.25
0

50

100

150

200

250

300

'80 '83 '85 '89 '92 '96 '98 '00 '04 '07

Trac Tcac

DRAM Performance Factors

▪ Row buffer
▪ Allows several words to be read and refreshed in

parallel

▪ Synchronous DRAM
▪ Allows for consecutive accesses in bursts without

needing to send each address
▪ Improves bandwidth

▪ DRAM banking
▪ Allows simultaneous access to multiple DRAMs
▪ Improves bandwidth

11/13/2023 Faculty of Computer Science and Engineering 14

Main Memory Supporting Caches

▪ Use DRAMs for main memory
▪ Fixed width (e.g., 1 word)
▪ Connected by fixed-width clocked bus
▪ Bus clock is typically slower than CPU clock

▪ Example cache block read
▪ 1 bus cycle for address transfer
▪ 15 bus cycles per DRAM access
▪ 1 bus cycle per data transfer

11/13/2023 Faculty of Computer Science and Engineering 15

Increasing Memory Bandwidth
▪ For 4-word block, 1-word-wide
DRAM

▪ Miss penalty = 1 + 4×15 + 4×1 = 65
bus cycles

▪ Bandwidth = 16 bytes / 65 cycles =
0.25 B/cycle

▪ 4-word wide memory

▪ Miss penalty = 1 + 15 + 1 = 17 bus
cycles

▪ Bandwidth = 16 bytes / 17 cycles =
0.94 B/cycle

▪ 4-bank interleaved memory

▪ Miss penalty = 1 + 15 + 4×1 = 20 bus
cycles

▪ Bandwidth = 16 bytes / 20 cycles =
0.8 B/cycle

11/13/2023 Faculty of Computer Science and Engineering 16

Flash Storage

▪ Nonvolatile semiconductor storage
▪ 100× – 1000× faster than disk

▪ Smaller, lower power, more robust

▪ But more $/GB (between disk and DRAM)

11/13/2023 Faculty of Computer Science and Engineering 17

This Photo by Unknown Author i s licensed under CC
BY

https://www.freeimageslive.co.uk/free_stock_image/flash-drive-jpg
https://creativecommons.org/licenses/by/3.0/
https://creativecommons.org/licenses/by/3.0/

Flash Types

▪ NOR flash: bit cell like a NOR gate
▪ Was first introduced by Intel in 1988
▪ Random read/write access
▪ Used for instruction memory in embedded systems

▪ NAND flash: bit cell like a NAND gate (SSD)
▪ Was introduced by Toshiba in 1989
▪ Denser (bits/area), but block-at-a-time access
▪ Cheaper per GB
▪ Used for USB keys, media storage, …

▪ Flash bits wears out after 1000’s of accesses
▪ Not suitable for direct RAM or disk replacement
▪ Wear leveling: remap data to less used blocks

11/13/2023 Faculty of Computer Science and Engineering 18

Disk Storage

▪ Nonvolatile, rotating magnetic storage

11/13/2023 Faculty of Computer Science and Engineering 19

Disk Sectors and Access

▪ Each sector records
▪ Sector ID
▪ Data (512 bytes, 4096 bytes proposed)
▪ Error correcting code (ECC)

▪ Used to hide defects and recording errors
▪ Synchronization fields and gaps

▪ Access to a sector involves
▪ Queuing delay if other accesses are pending
▪ Seek: move the heads
▪ Rotational latency
▪ Data transfer
▪ Controller overhead

11/13/2023 Faculty of Computer Science and Engineering 20

Disk Access Example

▪ Given
▪ 512B sector, 15,000rpm, 4ms average seek time, 100MB/s

transfer rate, 0.2ms controller overhead, idle disk

▪ Average read time
▪ 4ms seek time

+ ½ / (15,000/60) = 2ms rotational latency
+ 512 / 100MB/s = 0.005ms transfer time
+ 0.2ms controller delay
= 6.2ms

▪ If actual average seek time is 1ms
▪ Average read time = 3.2ms

11/13/2023 Faculty of Computer Science and Engineering 21

Disk Performance Issues

▪ Manufacturers quote average seek time
▪ Based on all possible seeks
▪ Locality and OS scheduling lead to smaller actual average

seek times

▪ Smart disk controller allocate physical sectors on disk
▪ Present logical sector interface to host
▪ SCSI, ATA, SATA

▪ Disk drives include caches
▪ Prefetch sectors in anticipation of access
▪ Avoid seek and rotational delay

11/13/2023 Faculty of Computer Science and Engineering 22

Cache Memory

▪ Cache memory
▪ The level of the memory hierarchy

closest to the CPU

▪ Given accesses X1, …, Xn–1, Xn

▪ How do we know if the data is
present?

▪ Where do we look?

11/13/2023 Faculty of Computer Science and Engineering 23

X4 X4

X1 X1

Xn – 2 Xn – 2

Xn – 1 Xn – 1

X2 X2

Xn

X3 X3

a. Before the

reference to Xn
b. After the

reference to Xn

Direct Mapped Cache

▪ Location determined by address

▪ Direct mapped: only one choice
▪ (Block address) modulo (#Blocks in cache)

▪ #Blocks is a power of 2

▪ Use low-order address bits

11/13/2023 Faculty of Computer Science and Engineering 24

Cache

Memory

0000100101 0100101101 10001101011100111101

0
0
0

0
0
1

0
1
0

0
1
1

1
0
0

1
0
1

1
1
0

1
1
1

Addressing - offset

▪ Offset
▪ Determined the position

(offset) of data in a block(line).

▪ Byte offset, half-word offset,
word offset.

11/13/2023 Faculty of Computer Science and Engineering 25

Tag Index Offset

031

bits# bits# bits

…

x …

a …

…

x

a

Given 8-byte block (line)

→ offset of x = 2

→ offset of a = 5

MEMORY

Cache

Addressing - index

▪ Index
▪ Determined the position of a

set in a cache

11/13/2023 Faculty of Computer Science and Engineering 26

Tag Index Offset

031

bits# bits# bits

…

x …

a …

…

Idx 0 Idx 1 Idx 2 Idx 3 Idx 4 Idx 5 Idx 6 Idx 7 Idx 0 Idx 7

x

a

Idx 0 Idx 1 Idx 2 Idx 3 Idx 4 Idx 5 Idx 6 Idx 7
Given 8-block cache

→ Index of x, a = 0
MEMORY

Cache

Addressing - Tag

▪ Tag
▪ Determined which block ID is

stored at specific index in a
cache

11/13/2023 Faculty of Computer Science and Engineering 27

Tag Index Offset

031

bits# bits# bits

Tag 0 Tag 0 Tag 0 Tag 0 Tag 0 Tag 0 Tag 0 Tag 0 Tag 1 … Tag n

…

x …

a …

…

Idx 0 Idx 1 Idx 2 Idx 3 Idx 4 Idx 5 Idx 6 Idx 7 Idx 0 Idx 7

Tag 1 Tag 0

x

a

Idx 0 Idx 1 Idx 2 Idx 3 Idx 4 Idx 5 Idx 6 Idx 7

Cache

Block Id = {Tag, Idx}

blockID of x, a = 8

Tag of x, a = 1

MEMORY

Addressing - Tag

▪ Tag
▪ Determined which block ID is

stored at specific index in a
cache

11/13/2023 Faculty of Computer Science and Engineering 28

Tag Index Offset

031

bits# bits# bits

Tag 0 Tag 0 Tag 0 Tag 0 Tag 0 Tag 0 Tag 0 Tag 0 Tag 1 … Tag n

b …

c x …

a …

…

Idx 0 Idx 1 Idx 2 Idx 3 Idx 4 Idx 5 Idx 6 Idx 7 Idx 0 Idx 7

Tag 0 Tag 0

b

c

Idx 0 Idx 1 Idx 2 Idx 3 Idx 4 Idx 5 Idx 6 Idx 7

Cache

Block Id = {Tag, Idx}

blockID of b, c = 0

Tag of b, c = 0

MEMORY

Your turn

▪ What are physical address of x, a?

▪ What are the Tag, Index, and Byte Offset of
a variable where its address is 0x01020304
(Hex)
▪ Use the configuration in the previous slide

11/13/2023 Faculty of Computer Science and Engineering 29

Your turn

▪ What are the Tag, Index, Byte Offset, and
BlockID of a variable where its address is
0x10203040 (Hex)
▪ Direct mapped

▪ 32-word block

▪ 64-block cache

11/13/2023 Faculty of Computer Science and Engineering 30

Tags and Valid Bits

▪ How do we know which particular block is stored in
a cache location?
▪ Store block address as well as the data
▪ Actually, only need the high-order bits
▪ Called the tag

▪ What if there is no data in a location?
▪ Valid bit
▪ 1 = present.
▪ 0 = not present.

▪ Initially 0

11/13/2023 Faculty of Computer Science and Engineering 31

Miss/Hit ratio

▪ What are address of a, b, c, …

▪ What are

Tag/Index of

a, b, c, ...

11/13/2023 Faculty of Computer Science and Engineering 32

Tag 0 Tag 0 Tag 0 Tag 0 Tag 0 Tag 0 Tag 0 Tag 0 Tag 1 Tag 1 … Tag n

a z …

d c i …

b g …

h …

Idx 0 Idx 1 Idx 2 Idx 3 Idx 4 Idx 5 Idx 6 Idx 7 Idx 0 Idx 7

+0 +1

+2 +3

+4 +5

+6 +7

MEMORY

Addressing of a block

Miss/Hit ratio

▪ After executing the given piece

of C code. What is miss/hit ratio?

▪ a = b + c;

▪ d = a + i;

▪ g= h + z;

▪ b = a + c;

▪ d = i + h;

All variable are 1-byte type.

In form of statement a = b + c; suppose that b read first, then c then a.

11/13/2023 Faculty of Computer Science and Engineering 33

Tag 0 Tag 0 Tag 0 Tag 0 Tag 0 Tag 0 Tag 0 Tag 0 Tag 1 Tag 1 … Tag n

a z …

d c i …

b g …

h …

Idx 0 Idx 1 Idx 2 Idx 3 Idx 4 Idx 5 Idx 6 Idx 7 Idx 0 Idx 7

Tag

Idx 0 Idx 1 Idx 2 Idx 3 Idx 4 Idx 5 Idx 6 Idx 7

Cache

MEMORY

Cache Example

▪ 8-blocks, 1 word/block, direct mapped

▪ Initial state

▪ Access word address:

22, 26, 22, 26, 16, 3, 16, 18

11/13/2023 Faculty of Computer Science and Engineering 34

Index V Tag Data

000 N

001 N

010 N

011 N

100 N

101 N

110 N

111 N

Cache Example

▪ 22
▪ 26
▪ 22
▪ 26
▪ 16
▪ 3
▪ 16
▪ 18

11/13/2023 Faculty of Computer Science and Engineering 35

Index V Tag Data

000 N

001 N

010 N

011 N

100 N

101 N

110 Y 10 Mem[10110]

111 N

Word addr Binary addr Hit/miss Cache block

22 10 110 Miss 110

Cache Example

▪ 22
▪ 26
▪ 22
▪ 26
▪ 16
▪ 3
▪ 16
▪ 18

11/13/2023 Faculty of Computer Science and Engineering 36

Index V Tag Data

000 N

001 N

010 Y 11 Mem[11010]

011 N

100 N

101 N

110 Y 10 Mem[10110]

111 N

Word addr Binary addr Hit/miss Cache block

26 11 010 Miss 010

Cache Example

▪ 22
▪ 26
▪ 22
▪ 26
▪ 16
▪ 3
▪ 16
▪ 18

11/13/2023 Faculty of Computer Science and Engineering 37

Index V Tag Data

000 N

001 N

010 Y 11 Mem[11010]

011 N

100 N

101 N

110 Y 10 Mem[10110]

111 N

Word addr Binary addr Hit/miss Cache block

22 10 110 Hit 110

26 11 010 Hit 010

Cache Example

▪ 22
▪ 26
▪ 22
▪ 26
▪ 16
▪ 3
▪ 16
▪ 18

11/13/2023 Faculty of Computer Science and Engineering 38

Index V Tag Data

000 Y 10 Mem[10000]

001 N

010 Y 11 Mem[11010]

011 Y 00 Mem[00011]

100 N

101 N

110 Y 10 Mem[10110]

111 N

Word addr Binary addr Hit/miss Cache block

16 10 000 Miss 000

3 00 011 Miss 011

16 10 000 Hit 000

Cache Example

▪ 22
▪ 26
▪ 22
▪ 26
▪ 16
▪ 3
▪ 16
▪ 18

11/13/2023 Faculty of Computer Science and Engineering 39

Index V Tag Data

000 Y 10 Mem[10000]

001 N

010 Y 10 Mem[10010]

011 Y 00 Mem[00011]

100 N

101 N

110 Y 10 Mem[10110]

111 N

Word addr Binary addr Hit/miss Cache block

18 10 010 Miss 010

Your turn

▪ What is Hit/Miss ratio when a processor
accesses a sequence of byte address: 1, 4, 2,
12, 3, 32, 0, 33, 1, 44

11/13/2023 Faculty of Computer Science and Engineering 40

Address Subdivision

11/13/2023 Faculty of Computer Science and Engineering 41

Address (showing bit positions)

Data

Hit

Data

Tag

Valid Tag

3220

Index

0

1

2

1023

1022

1021

=

Index

20 10

Byte
offset

30 13 12 11 2 1 031

Example: Larger Block Size

▪ 64 blocks, 16 bytes/block
▪ To what block number does address 1200

map?

▪ Block address = 1200/16 = 75

▪ Block number (ID) = 75 modulo 64 = 11

11/13/2023 Faculty of Computer Science and Engineering 42

Tag Index Offset

03491031

4 bits6 bits22 bits

Block Size Considerations

▪ Larger blocks should reduce miss rate
▪ Due to spatial locality

▪ But in a fixed-sized cache
▪ Larger blocks  fewer of them
▪ More competition  increased miss rate

▪ Larger blocks  pollution (much unnecessarily
data)

▪ Larger miss penalty
▪ Can override benefit of reduced miss rate
▪ Early restart and critical-word-first can help

11/13/2023 Faculty of Computer Science and Engineering 43

Cache Misses

▪ On cache hit, CPU proceeds normally

▪ On cache miss
▪ Stall the CPU pipeline
▪ Fetch block from next level of hierarchy
▪ Instruction cache miss
▪ Restart instruction fetch

▪ Data cache miss
▪ Complete data access

11/13/2023 Faculty of Computer Science and Engineering 44

Write-Through

▪ On data-write hit, could just update the block in cache
▪ But then cache and memory would be inconsistent

▪ Write through: also update memory

▪ But makes writes take longer
▪ e.g., if base CPI = 1, 10% of instructions are stores, write to

memory takes 100 cycles
▪ Effective CPI = 1 + 0.1×100 = 11

▪ Solution: write buffer
▪ Holds data waiting to be written to memory
▪ CPU continues immediately

▪ Only stalls on write if write buffer is already full

11/13/2023 Faculty of Computer Science and Engineering 45

Write-Back

▪ Alternative: On data-write hit, just update
the block in cache
▪ Keep track of whether each block is dirty

▪ When a dirty block is replaced
▪ Write it back to memory

▪ Can use a write buffer to allow replacing block
to be read first

11/13/2023 Faculty of Computer Science and Engineering 46

Write Allocation

▪ What should happen on a write miss?
▪ Alternatives for write-through
▪ Allocate on miss (write allocate or fetch-on write):

fetch the block
▪ Write around (write-no-allocate): don’t fetch the

block
▪ Since programs often write a whole block before

reading it (e.g., initialization)

▪ For write-back
▪ Usually fetch the block

11/13/2023 Faculty of Computer Science and Engineering 47

Cache coherence

11/13/2023 Faculty of Computer Science and Engineering 48

Example: Intrinsity FastMATH

▪ Embedded MIPS processor
▪ 12-stage pipeline
▪ Instruction and data access on each cycle

▪ Split cache: separate I-cache and D-cache
▪ Each 16KB: 256 blocks × 16 words/block
▪ D-cache: write-through or write-back

▪ SPEC2000 miss rates
▪ I-cache: 0.4%
▪ D-cache: 11.4%
▪ Weighted average: 3.2%

11/13/2023 Faculty of Computer Science and Engineering 49

Example: Intrinsity FastMATH

11/13/2023 Faculty of Computer Science and Engineering 50

32

18

=

Mux

3232 32

Address (showing bit positions)

Data
Hit

Data

Tag

V Tag

Index

18 8 Byte
offset

1314 2 1 031 65

4

Block offset

256
entries

512bitsbits18

Measuring Cache Performance

▪ Components of CPU time
▪ Program execution cycles

▪ Includes cache hit time
▪ Memory stall cycles

▪ Mainly from cache misses

▪ With simplifying assumptions:

11/13/2023 Faculty of Computer Science and Engineering 51

penalty Miss
nInstructio

Misses

Program

nsInstructio

penalty Missrate Miss
Program

accessesMemory

cycles stallMemory

=

=

I-cache, D-cache

11/13/2023 Faculty of Computer Science and Engineering 52

PC InstructionAddress Registers ALU Address

Data

Instruction

cache

Data

cache

Instruction

memory

Data

memory

I-cache, D-cache Miss

▪ I-cache Miss

▪ D-cache Miss

11/13/2023 Faculty of Computer Science and Engineering 53

REG ALU DMIM Stall Stall Stall…. REGDM

REG ALU REGDMIMIM Stall Stall Stall….

Instruction fetch:

NOT FOUND

data access:

NOT FOUND

Cache Performance Example

▪ Given
▪ I-cache miss rate = 2%
▪ D-cache miss rate = 4%
▪ Miss penalty = 100 cycles
▪ Base CPI (ideal cache) = 2
▪ Load & stores are 36% of instructions

▪ Miss cycles per instruction
▪ I-cache: 0.02 × 100 = 2
▪ D-cache: 0.36 × 0.04 × 100 = 1.44

▪ Actual CPI = 2 + 2 + 1.44 = 5.44
▪ Ideal CPU is 5.44/2 =2.72 times faster

11/13/2023 Faculty of Computer Science and Engineering 54

Average Access Time

▪ Hit time is also important for performance

▪ Average memory access time (AMAT)
▪ AMAT = Hit time + Miss rate × Miss penalty

▪ Example
▪ CPU with 1ns clock, hit time = 1 cycle, miss

penalty = 20 cycles, I-cache miss rate = 5%
▪ AMAT = 1 + 0.05 × 20 = 2ns
▪ 2 cycles per instruction

11/13/2023 Faculty of Computer Science and Engineering 55

Performance Summary

▪ When CPU performance increased
▪ Miss penalty becomes more significant

▪ Decreasing base CPI
▪ Greater proportion of time spent on memory stalls

▪ Increasing clock rate
▪ Memory stalls account for more CPU cycles

▪ Can’t neglect cache behavior when evaluating
system performance

11/13/2023 Faculty of Computer Science and Engineering 56

Associative Caches

▪ Fully associative
▪ Allow a given block to go in any cache entry
▪ Requires all entries to be searched at once
▪ Comparator per entry (expensive)

▪ n-way set associative
▪ Each set contains n entries
▪ Block number determines which set
▪ (Block number) modulo (#Sets in cache)

▪ Search all entries in a given set at once
▪ n comparators (less expensive)

11/13/2023 Faculty of Computer Science and Engineering 57

Associative Cache Example

11/13/2023 Faculty of Computer Science and Engineering 58

Direct mapped Set associative Fully associative

Set # 0 1 2 3 4 5 6 7 Set # 0 1 2 3

Data

Tag

Search

1

2

Data

Tag

Search

1

2

Data

Tag

Search

1

2

Your turn

▪ Given a configuration of cache system
▪ 32-word block
▪ 128-Kbyte cache.
▪ 4G RAM

▪ How wide are Tag, Index, and Byte Offset fields for:
▪ Direct mapped
▪ 4-way set associative
▪ Fully associative

▪ Given int A at 0x12345678. What are Tag, Index,
word offset of A for each configuration?

11/13/2023 Faculty of Computer Science and Engineering 59

Spectrum of Associativity

▪ For a cache with 8 entries

11/13/2023 Faculty of Computer Science and Engineering 60

Block Tag Data

0

1

2

3

4

5

6

7

One-way set associative
(direct mapped)

Two-way
set associative

Four-way
set associative

Eight-way set associative (fully associative)

Set Tag Data Tag Data

0

1

2

3

Set Tag Data Tag Data Tag Data Tag Data

0

1
T
a

g

d
a

ta

T
a

g

d
a

ta

T
a

g

d
a

ta

T
a

g

d
a

ta

T
a

g

d
a

ta

T
a

g

T
a

g

T
a

g

d
a

ta

T
a

g

d
a

ta

Associativity Example

▪ Compare 4-block caches
▪ Direct mapped, 2-way set associative,

fully associative
▪ Block access sequence: 0, 8, 0, 6, 8

▪ Direct mapped (100% Miss)

11/13/2023 Faculty of Computer Science and Engineering 61

Block

address

Cache

index

Hit/miss Cache content after access

0 1 2 3

0 0 miss Mem[0]

8 0 miss Mem[8]

0 0 miss Mem[0]

6 2 miss Mem[0] Mem[6]

8 0 miss Mem[8] Mem[6]

Associativity Example

▪ 2-way set associative (80% Miss)

▪ Fully associative (60% Miss)

11/13/2023 62

Block

address

Cache

index

Hit/miss Cache content after access

Set 0 Set 1

0 0 miss Mem[0]

8 0 miss Mem[0] Mem[8]

0 0 hit Mem[0] Mem[8]

6 0 miss Mem[0] Mem[6]

8 0 miss Mem[8] Mem[6]

Block

address

Hit/miss Cache content after access

0 miss Mem[0]

8 miss Mem[0] Mem[8]

0 hit Mem[0] Mem[8]

6 miss Mem[0] Mem[8] Mem[6]

8 hit Mem[0] Mem[8] Mem[6]

How Much Associativity

▪ Increased associativity decreases miss rate
▪ But with diminishing returns

▪ Simulation of a system with 64KB D-cache,
16-word blocks, SPEC2000
▪ 1-way: 10.3%
▪ 2-way: 8.6%
▪ 4-way: 8.3%
▪ 8-way: 8.1%

11/13/2023 Faculty of Computer Science and Engineering 63

Set Associative Cache Organization

11/13/2023 Faculty of Computer Science and Engineering 64

=

4-to-1 multiplexor

= = =

DataHit

Address

Data

Tag

V Tag

Index

22 8

2 1 311 10 9 123031 8 0

Index
0
1
2

253
254
255

DataV Tag DataV Tag DataV Tag

22 32

Replacement Policy

▪ Direct mapped: no choice

▪ Set associative
▪ Prefer non-valid entry, if there is one
▪ Otherwise, choose among entries in the set

▪ Least-recently used (LRU)
▪ Choose the one unused for the longest time

▪ Simple for 2-way, manageable for 4-way, too hard beyond that

▪ Random
▪ Gives approximately the same performance as LRU for high

associativity

11/13/2023 Faculty of Computer Science and Engineering 65

Multilevel Caches

▪ Primary cache attached to CPU
▪ Small, but fast

▪ Level-2 cache services misses from primary
cache
▪ Larger, slower, but still faster than main

memory

▪ Main memory services L-2 cache misses

▪ Some high-end systems include L-3 cache

11/13/2023 Faculty of Computer Science and Engineering 66

Multilevel Cache Example

▪ Given
▪ CPU base CPI = 1, clock rate = 4GHz

▪ Miss rate/instruction = 2%

▪ Main memory access time = 100ns

▪ With just primary cache
▪ Miss penalty = 100ns/0.25ns = 400 cycles

▪ Effective CPI = 1 + 0.02 × 400 = 9

11/13/2023 Faculty of Computer Science and Engineering 67

Multilevel Cache Example (cont.)

▪ Now add L-2 cache
▪ Access time = 5ns
▪ Global miss rate to main memory = 0.5%

▪ Primary miss with L-2 hit
▪ Penalty = 5ns/0.25ns = 20 cycles

▪ Primary miss with L-2 miss
▪ Extra penalty = 500 cycles

▪ CPI = 1 + 0.02 × 20 + 0.005 × 400 = 3.4
▪ Performance ratio = 9/3.4 = 2.6

11/13/2023 Faculty of Computer Science and Engineering 68

Multilevel Cache Considerations

▪ Primary cache
▪ Focus on minimal hit time

▪ L-2 cache
▪ Focus on low miss rate to avoid main memory

access
▪ Hit time has less overall impact

▪ Results
▪ L-1 cache usually smaller than a single cache
▪ L-1 block size smaller than L-2 block size

11/13/2023 Faculty of Computer Science and Engineering 69

Interactions with Advanced CPUs

▪ Out-of-order CPUs can execute instructions
during cache miss
▪ Pending store stays in load/store unit

▪ Dependent instructions wait in reservation stations

▪ Independent instructions continue

▪ Effect of miss depends on program data flow
▪ Much harder to analyse

▪ Use system simulation

11/13/2023 Faculty of Computer Science and Engineering 70

Virtual Machines

▪ Host computer emulates guest operating system and
machine resources
▪ Improved isolation of multiple guests
▪ Avoids security and reliability problems
▪ Aids sharing of resources

▪ Virtualization has some performance impact
▪ Feasible with modern high-performance computers

▪ Examples: (Operating) System Virtual Machines
▪ IBM VM/370 (1970s technology!)
▪ VMWare
▪ Microsoft Virtual PC

11/13/2023 Faculty of Computer Science and Engineering 71

Virtual Machine Monitor (hypervisor)

▪ Maps virtual resources to physical resources
▪ Memory, I/O devices, CPUs

▪ Guest code runs on native machine in user
mode
▪ Traps to VMM on privileged instructions and access

to protected resources

▪ Guest OS may be different from host OS
▪ VMM handles real I/O devices
▪ Emulates generic virtual I/O devices for guest

11/13/2023 Faculty of Computer Science and Engineering 72

Virtual machine architecture

11/13/2023 Faculty of Computer Science and Engineering 73

Physical Hardware

Host Operating System

VMWare Hypervisor

A
p

p
lica

tio
n

Guest Operating System

(Linux)

A
p

p
lica

tio
n

A
p

p
lica

tio
n

A
p

p
lica

tio
n

VM1

A
p

p
lica

tio
n

Guest Operating System

(Window)

A
p

p
lica

tio
n

A
p

p
lica

tio
n

A
p

p
lica

tio
n

VM2

Example: Timer Virtualization

▪ In native machine, on timer interrupt
▪ OS suspends current process, handles interrupt, selects

and resumes next process

▪ With Virtual Machine Monitor
▪ VMM suspends current VM, handles interrupt, selects

and resumes next VM

▪ If a VM requires timer interrupts
▪ VMM emulates a virtual timer
▪ Emulates interrupt for VM when physical timer

interrupt occurs

11/13/2023 Faculty of Computer Science and Engineering 74

Instruction Set Support

▪ User and System modes

▪ Privileged instructions only available in system mode
▪ Trap to system if executed in user mode

▪ All physical resources only accessible using
privileged instructions
▪ Including page tables, interrupt controls, I/O registers

▪ Renaissance of virtualization support
▪ Current ISAs (e.g., x86) adapting

11/13/2023 Faculty of Computer Science and Engineering 75

Virtual Memory

▪ Use main memory as a “cache” for secondary (disk) storage
▪ Managed jointly by CPU hardware and the operating system (OS)

▪ Programs share main memory
▪ Each gets a private virtual address space holding its frequently used

code and data
▪ Protected from other programs

▪ CPU and OS translate virtual addresses to physical addresses
▪ VM “block” is called a page
▪ VM translation “miss” is called a page fault

11/13/2023 Faculty of Computer Science and Engineering 76

Address Translation

▪ Fixed-size pages (e.g., 4K)

11/13/2023 Faculty of Computer Science and Engineering 77

Virtual addresses Physical addresses

Address translation

Disk addresses

Page Fault Penalty

▪ On page fault, the page must be fetched
from disk
▪ Takes millions of clock cycles

▪ Handled by OS code

▪ Try to minimize page fault rate
▪ Fully associative placement

▪ Smart replacement algorithms

11/13/2023 Faculty of Computer Science and Engineering 78

Page Tables

▪ Stores placement information
▪ Array of page table entries, indexed by virtual page

number
▪ Page table register in CPU points to page table in

physical memory

▪ If page is present in memory
▪ PTE stores the physical page number
▪ Plus other status bits (referenced, dirty, …)

▪ If page is not present
▪ PTE can refer to location in swap space on disk

11/13/2023 Faculty of Computer Science and Engineering 79

Translation Using a Page Table

11/13/2023 80

Virtual page number Page offset

2731 30 29 28 02 1 3814 13 12 11 10 9 15

Physical page number Page offset

29 2728 02 1 315 814 13 12 11 10 9

Virtual address

Physical address

Page table register

Physical page numberValid

Page table

If 0 then page is not
present in memory

20 12

18

Mapping Pages to Storage

11/13/2023 Faculty of Computer Science and Engineering 81

Physical page or

disk address
Physical memory

Virtual page

number

Disk storage

1
1
1
1
0
1
1

1
1

1

0

0

Valid

Page table

Replacement and Writes

▪ To reduce page fault rate, prefer least-recently used
(LRU) replacement
▪ Reference bit (aka use bit) in PTE set to 1 on access to page
▪ Periodically cleared to 0 by OS
▪ A page with reference bit = 0 has not been used recently

▪ Disk writes take millions of cycles
▪ Block at once, not individual locations
▪ Write through is impractical
▪ Use write-back
▪ Dirty bit in PTE set when page is written

11/13/2023 Faculty of Computer Science and Engineering 82

Fast Translation Using a TLB

▪ Translation-lookaside buff er

▪ Address translation would appear to require extra
memory references
▪ One to access the PTE
▪ Then the actual memory access

▪ But access to page tables has good locality
▪ So use a fast cache of PTEs within the CPU
▪ Called a Translation Look-aside Buffer (TLB)
▪ Typical: 16–512 PTEs, 0.5–1 cycle for hit, 10–100 cycles for

miss, 0.01%–1% miss rate
▪ Misses could be handled by hardware or software

11/13/2023 Faculty of Computer Science and Engineering 83

Fast Translation Using a TLB

11/13/2023 Faculty of Computer Science and Engineering 84

1
1
1
1
0
1
1

1
1

1

0

0

0
0
0
0
0
0
0

1
1

1

0

0

1
0
0
1
0
1
1

1
1

1

0

0

Physical page

or disk address

Disk storage

Valid Dirty Ref

Page table

Physical memory

Virtual page
number

1
1
1
1
0
1

0
1
1
0
0
0

1
1
1
1
0
1

Physical page

addressValid Dirty Ref Tag

TLB

TLB Misses

▪ If page is in memory
▪ Load the PTE from memory and retry
▪ Could be handled in hardware
▪ Can get complex for more complicated page table

structures
▪ Or in software
▪ Raise a special exception, with optimized handler

▪ If page is not in memory (page fault)
▪ OS handles fetching the page and updating the page

table
▪ Then restart the faulting instruction

11/13/2023 Faculty of Computer Science and Engineering 85

TLB Miss Handler

▪ TLB miss indicates
▪ Page present, but PTE not in TLB
▪ Page not preset

▪ Must recognize TLB miss before destination
register overwritten
▪ Raise exception

▪ Handler copies PTE from memory to TLB
▪ Then restarts instruction
▪ If page not present, page fault will occur

11/13/2023 Faculty of Computer Science and Engineering 86

Page Fault Handler

▪ Use faulting virtual address to find PTE

▪ Locate page on disk

▪ Choose page to replace
▪ If dirty, write to disk first

▪ Read page into memory and update page table

▪ Make process runnable again
▪ Restart from faulting instruction

11/13/2023 Faculty of Computer Science and Engineering 87

TLB and Cache Interaction

▪ If cache tag uses
physical address
▪ Need to translate

before cache lookup

▪ Alternative: use virtual
address tag
▪ Complications due to

aliasing
▪ Different virtual

addresses for shared
physical address

11/13/2023 88

=

20

Virtual page number Page offset

TagValid Dirty

TLB

Physical page number

TLB hit
=
=
=
=
=

Physical page number Page offset

Physical address tag Cache index

12

20

Block
offset

Physical address

31 30 29 3 2 1 014 13 12 11 10 9
Virtual address

=

TagValid

Cache hit

Data

Data

18

32

8 4 2

12
8

Cache

Byte
offset

Memory Protection

▪ Different tasks can share parts of their virtual
address spaces
▪ But need to protect against errant access
▪ Requires OS assistance

▪ Hardware support for OS protection
▪ Privileged supervisor mode (aka kernel mode)
▪ Privileged instructions
▪ Page tables and other state information only

accessible in supervisor mode
▪ System call exception (e.g., syscall in MIPS)

11/13/2023 Faculty of Computer Science and Engineering 89

The Memory Hierarchy

▪ Common principles apply at all levels of the
memory hierarchy
▪ Based on notions of caching

▪ At each level in the hierarchy
▪ Block placement
▪ Finding a block
▪ Replacement on a miss
▪ Write policy

11/13/2023 Faculty of Computer Science and Engineering 90

Block Placement

▪ Determined by associativity
▪ Direct mapped (1-way associative)
▪ One choice for placement

▪ n-way set associative
▪ n choices within a set

▪ Fully associative
▪ Any location

▪ Higher associativity reduces miss rate
▪ Increases complexity, cost, and access time

11/13/2023 Faculty of Computer Science and Engineering 91

Finding a Block

▪ Hardware caches
▪ Reduce comparisons to reduce cost

▪ Virtual memory
▪ Full table lookup makes full associativity feasible
▪ Benefit in reduced miss rate

11/13/2023 Faculty of Computer Science and Engineering 92

Associativity Location method Tag comparisons

Direct mapped Index 1

n-way set

associative

Set index, then search

entries within the set

n

Fully associative Search all entries #entries

Full lookup table 0

Replacement

▪ Choice of entry to replace on a miss
▪ Least recently used (LRU)
▪ Complex and costly hardware for high

associativity

▪ Random
▪ Close to LRU, easier to implement

▪ Virtual memory
▪ LRU approximation with hardware support

11/13/2023 Faculty of Computer Science and Engineering 93

Write Policy

▪ Write-through
▪ Update both upper and lower levels
▪ Simplifies replacement, but may require write

buffer

▪ Write-back
▪ Update upper level only
▪ Update lower level when block is replaced
▪ Need to keep more state

▪ Virtual memory
▪ Only write-back is feasible, given disk write latency

11/13/2023 Faculty of Computer Science and Engineering 94

Sources of Misses

▪ Compulsory misses (aka cold start misses)
▪ First access to a block

▪ Capacity misses
▪ Due to finite cache size
▪ A replaced block is later accessed again

▪ Conflict misses (aka collision misses)
▪ In a non-fully associative cache
▪ Due to competition for entries in a set
▪ Would not occur in a fully associative cache of the

same total size

11/13/2023 Faculty of Computer Science and Engineering 95

Cache Design Trade-offs

Design

change

Effect on miss rate Negative performance effect

Increase

cache size

Decrease capacity

misses

May increase access time

Increase

associativity

Decrease conflict

misses

May increase access time

Increase

block size

Decrease

compulsory misses

Increases miss penalty. For very

large block size, may increase

miss rate due to pollution.

11/13/2023 Faculty of Computer Science and Engineering 96

Cache Control

▪ Example cache characteristics
▪ Direct-mapped, write-back, write allocate
▪ Block size: 4 words (16 bytes)
▪ Cache size: 16 KB (1024 blocks)
▪ 32-bit byte addresses
▪ Valid bit and dirty bit per block
▪ Blocking cache
▪ CPU waits until access is complete

11/13/2023 Faculty of Computer Science and Engineering 97

Tag Index Offset

03491031

4 bits10 bits18 bits

Interface Signals

11/13/2023 Faculty of Computer Science and Engineering 98

CacheCPU Memory

Read/Write

Valid

Address

Write Data

Read Data

Ready

32

32

32

Read/Write

Valid

Address

Write Data

Read Data

Ready

32

128

128

Multiple cycles

per access

Cache Coherence Problem

▪ Suppose two CPU cores share a physical
address space
▪ Write-through caches

11/13/2023 Faculty of Computer Science and Engineering 101

Time step Event CPU A’s cache CPU B’s cache Memory

0 0

1 CPU A reads X 0 0

2 CPU B reads X 0 0 0

3 CPU A writes

1 to X

1 0 1

Coherence Defined

▪ Informally: Reads return most recently written value

▪ Formally:
▪ P writes X; P reads X (no intervening writes)

 read returns written value
▪ P1 writes X; P2 reads X (sufficiently later)

 read returns written value
▪ c.f. CPU B reading X after step 3 in example

▪ P1 writes X, P2 writes X
 all processors see writes in the same order
▪ End up with the same final value for X

11/13/2023 Faculty of Computer Science and Engineering 102

Cache Coherence Protocols

▪ Operations performed by caches in multiprocessors to
ensure coherence
▪ Migration of data to local caches

▪ Reduces bandwidth for shared memory
▪ Replication of read-shared data

▪ Reduces contention for access

▪ Snooping protocols
▪ Each cache monitors bus reads/writes

▪ Directory-based protocols
▪ Caches and memory record sharing status of blocks in a

directory

11/13/2023 Faculty of Computer Science and Engineering 103

Invalidating Snooping Protocols

▪ Cache gets exclusive access to a block when it is to
be written
▪ Broadcasts an invalidate message on the bus
▪ Subsequent read in another cache misses
▪ Owning cache supplies updated value

11/13/2023 Faculty of Computer Science and Engineering 104

CPU activity Bus activity CPU A’s cache CPU B’s cache Memory

0

CPU A reads X Cache miss for X 0 0

CPU B reads X Cache miss for X 0 0 0

CPU A writes 1 to X Invalidate for X 1 0

CPU B read X Cache miss for X 1 1 1

Memory Consistency

▪ When are writes seen by other processors
▪ “Seen” means a read returns the written value
▪ Can’t be instantaneously

▪ Assumptions
▪ A write completes only when all processors have seen it
▪ A processor does not reorder writes with other accesses

▪ Consequence
▪ P writes X then writes Y

 all processors that see new Y also see new X
▪ Processors can reorder reads, but not writes

11/13/2023 Faculty of Computer Science and Engineering 105

Multilevel On-Chip Caches

11/13/2023 Faculty of Computer Science and Engineering 106

2-Level TLB Organization

11/13/2023 Faculty of Computer Science and Engineering 107

Supporting Multiple Issue

▪ Both have multi-banked caches that allow
multiple accesses per cycle assuming no bank
conflicts

▪ Core i7 cache optimizations
▪ Return requested word first
▪ Non-blocking cache
▪ Hit under miss
▪ Miss under miss

▪ Data prefetching

11/13/2023 Faculty of Computer Science and Engineering 108

Pitfalls

▪ Byte vs. word addressing
▪ Example: 32-byte direct-mapped cache,

4-byte blocks
▪ Byte 36 maps to block 1
▪ Word 36 maps to block 4

▪ Ignoring memory system effects when writing
or generating code
▪ Example: iterating over rows vs. columns of arrays
▪ Large strides result in poor locality

11/13/2023 Faculty of Computer Science and Engineering 109

Pitfalls

▪ In multiprocessor with shared L2 or L3 cache
▪ Less associativity than cores results in conflict

misses

▪ More cores  need to increase associativity

▪ Using AMAT to evaluate performance of out-of-
order processors
▪ Ignores effect of non-blocked accesses

▪ Instead, evaluate performance by simulation

11/13/2023 Faculty of Computer Science and Engineering 110

Pitfalls

▪ Extending address range using segments
▪ E.g., Intel 80286
▪ But a segment is not always big enough
▪ Makes address arithmetic complicated

▪ Implementing a VMM on an ISA not designed for
virtualization
▪ E.g., non-privileged instructions accessing hardware

resources
▪ Either extend ISA, or require guest OS not to use

problematic instructions

11/13/2023 Faculty of Computer Science and Engineering 111

Concluding Remarks

▪ Fast memories are small, large memories are slow
▪ We really want fast, large memories 
▪ Caching gives this illusion ☺

▪ Principle of locality
▪ Programs use a small part of their memory space

frequently

▪ Memory hierarchy
▪ L1 cache  L2 cache  …  DRAM memory

 disk

▪ Memory system design is critical for multiprocessors

11/13/2023 Faculty of Computer Science and Engineering 112

	Slide 1: Chapter 5: Large and Fast: Exploiting Memory Hierarchy
	Slide 2: This chapter contents
	Slide 3: This chapter outcomes
	Slide 4: Principle of Locality
	Slide 5: Warm up
	Slide 6: Taking Advantage of Locality
	Slide 7: Memory Hierarchy Levels
	Slide 8: Memory Technology
	Slide 9: Dynamic RAM (DRAM) cell
	Slide 10: Static RAM (SRAM) cell
	Slide 11: DRAM Technology
	Slide 12: Advanced DRAM Organization
	Slide 13: DRAM Generations
	Slide 14: DRAM Performance Factors
	Slide 15: Main Memory Supporting Caches
	Slide 16: Increasing Memory Bandwidth
	Slide 17: Flash Storage
	Slide 18: Flash Types
	Slide 19: Disk Storage
	Slide 20: Disk Sectors and Access
	Slide 21: Disk Access Example
	Slide 22: Disk Performance Issues
	Slide 23: Cache Memory
	Slide 24: Direct Mapped Cache
	Slide 25: Addressing - offset
	Slide 26: Addressing - index
	Slide 27: Addressing - Tag
	Slide 28: Addressing - Tag
	Slide 29: Your turn
	Slide 30: Your turn
	Slide 31: Tags and Valid Bits
	Slide 32: Miss/Hit ratio
	Slide 33: Miss/Hit ratio
	Slide 34: Cache Example
	Slide 35: Cache Example
	Slide 36: Cache Example
	Slide 37: Cache Example
	Slide 38: Cache Example
	Slide 39: Cache Example
	Slide 40: Your turn
	Slide 41: Address Subdivision
	Slide 42: Example: Larger Block Size
	Slide 43: Block Size Considerations
	Slide 44: Cache Misses
	Slide 45: Write-Through
	Slide 46: Write-Back
	Slide 47: Write Allocation
	Slide 48: Cache coherence
	Slide 49: Example: Intrinsity FastMATH
	Slide 50: Example: Intrinsity FastMATH
	Slide 51: Measuring Cache Performance
	Slide 52: I-cache, D-cache
	Slide 53: I-cache, D-cache Miss
	Slide 54: Cache Performance Example
	Slide 55: Average Access Time
	Slide 56: Performance Summary
	Slide 57: Associative Caches
	Slide 58: Associative Cache Example
	Slide 59: Your turn
	Slide 60: Spectrum of Associativity
	Slide 61: Associativity Example
	Slide 62: Associativity Example
	Slide 63: How Much Associativity
	Slide 64: Set Associative Cache Organization
	Slide 65: Replacement Policy
	Slide 66: Multilevel Caches
	Slide 67: Multilevel Cache Example
	Slide 68: Multilevel Cache Example (cont.)
	Slide 69: Multilevel Cache Considerations
	Slide 70: Interactions with Advanced CPUs
	Slide 71: Virtual Machines
	Slide 72: Virtual Machine Monitor (hypervisor)
	Slide 73: Virtual machine architecture
	Slide 74: Example: Timer Virtualization
	Slide 75: Instruction Set Support
	Slide 76: Virtual Memory
	Slide 77: Address Translation
	Slide 78: Page Fault Penalty
	Slide 79: Page Tables
	Slide 80: Translation Using a Page Table
	Slide 81: Mapping Pages to Storage
	Slide 82: Replacement and Writes
	Slide 83: Fast Translation Using a TLB
	Slide 84: Fast Translation Using a TLB
	Slide 85: TLB Misses
	Slide 86: TLB Miss Handler
	Slide 87: Page Fault Handler
	Slide 88: TLB and Cache Interaction
	Slide 89: Memory Protection
	Slide 90: The Memory Hierarchy
	Slide 91: Block Placement
	Slide 92: Finding a Block
	Slide 93: Replacement
	Slide 94: Write Policy
	Slide 95: Sources of Misses
	Slide 96: Cache Design Trade-offs
	Slide 97: Cache Control
	Slide 98: Interface Signals
	Slide 101: Cache Coherence Problem
	Slide 102: Coherence Defined
	Slide 103: Cache Coherence Protocols
	Slide 104: Invalidating Snooping Protocols
	Slide 105: Memory Consistency
	Slide 106: Multilevel On-Chip Caches
	Slide 107: 2-Level TLB Organization
	Slide 108: Supporting Multiple Issue
	Slide 109: Pitfalls
	Slide 110: Pitfalls
	Slide 111: Pitfalls
	Slide 112: Concluding Remarks

