Digital Design with the Verilog HDL Chapter 1: Digital Design Review

Binh Tran-Thanh

Department of Computer Engineering Faculty of Computer Science and Engineering Ho Chi Minh City University of Technology

January 15, 2024

1/26

イロト イヨト イヨト

Technology Tradeoffs

Non-Recurring Engineering (NRE) Cost Process complexity Density, speed, complexity

イロト イヨト イヨト イヨト

Design Methodology

Combinational – Sequential Logic

- Combinational logic:
 - The outputs at any time, t, are a function of only the inputs at time t
- Sequential logic:
 - The outputs at time t are a function of the inputs at time t and **the outputs at time** t-1

Transistor

^{5 / 26}

CMOS Technology

- Complementary metal-oxide semiconductor
- Outputs are always either 0 or 1

Parallel and Serial

- nMOS: 1 = ON
- pMOS: 0 = ON

- Series: all transistors are on
- **Parallel**: at least one transistor is on

The "Conduction Complement" Rule

- CMOS gate's output is always either 0 or 1 A
- For example: NAND
 - Y=0 if and only if both inputs are 1
 - $Y{=}1$ if and only at least one input is 0
 - pMos transistors are parallel while nMos transistors are serial
- The "Conduction Complements" rule
 - The pull-up network always complements the pull-down network
 - Parallel \rightarrow Serial, Serial \rightarrow Parallel

< ロ > < 同 > < 回 > < 回 >

CMOS Inverter

CMOS Inverter

10 / 26

2

CMOS Inverter

11 / 26

2

Α	В	Υ
0	0	
0	1	
1	0	
1	1	

Α	В	Υ
0	0	1
0	1	
1	0	
1	1	

Α	В	Y
0	0	1
0	1	1
1	0	
1	1	

Α	В	Υ
0	0	1
0	1	1
1	0	1
1	1	

Α	В	Υ
0	0	1
0	1	1
1	0	1
1	1	0

CMOS NOR Gate

Α	В	Υ
0	0	1
0	1	0
1	0	0
1	1	0

3-input NAND Gate

- Y is 0 if and only if ALL inputs are 1
- Y is 1 if and only if AT LEAST one input is 0

Design CMOS Gates

Example

Using the CMOS Technology, draw transistor structure of a 4-input NOR gate

Design CMOS Gate (cont.)

Example 2 (Homework)

Using the CMOS Technology, draw transistor structure of a 4-input NAND gate

Compound Gates

Compound gates: can describe any inverter function (not function)

イロト イヨト イヨト

Example: AOI22

AOI22

Use AND/OR gate to implement?

• 20 transistors

AND

23 / 26

< ロ > < 回 > < 回 > < 回 > < 回 >

Example: O3AI

Standard Cells

- Library of common gates and structures (cells)
- Decompose hardware in terms of these cells
- Arrange the cells on the chip
- Connect them using metal wiring

FPGAs

- "Programmable" hardware
- Use small memories as truth tables of functions
- Decompose circuit into these blocks
- Connect using programmable routing
- SRAM bits control functionality

