Digital Design with the Verilog HDL
Chapter 2: Introduction to Verilog

Binh Tran-Thanh

Department of Computer Engineering
Faculty of Computer Science and Engineering
Ho Chi Minh City University of Technology

January 15, 2024

N
Overview of HDLs

e Hardware description languages (HDLs)
o Are computer-based hardware description languages
o Allow modeling and simulating the functional behavior and timing of
digital hardware
e Synthesis tools take an HDL description and generate a
technology-specific netlist
@ Two main HDLs used by industry

o Verilog HDL (C-based, industry-driven)
e VHSIC HDL or VHDL (Ada-based, defense/industry/university-driven).

>

2/47

-
Synthesis of HDLs

@ Takes a description of what a circuit DOES
@ Creates the hardware to DO it

@ HDLs may LOOK like software, but they’re not!

e NOT a program
e Doesn't "run"” on anything

@ Though we do simulate them on computers
e Don't confuse them!

@ Also use HDLs to test the hardware you create
e This is more like software

>

3/47

Describing Hardware!

if (a) f =c & d;
All b) else if (b) f = d;
° ardware created during olse f=dge;
synthesis
o Even if a is true, still C
computing d&e f
@ Learn to understand how d —
descriptions translated to
€
hardware
a
b

>

4/47

-
Why Use an HDL?

@ More and more transistors can fit on a chip

o Allows larger designs!
o Work at transistor/gate level for large designs: hard
e Many designs need to go to production quickly

@ Abstract large hardware designs!

o Describe what you need the hardware to do
e Tools then design the hardware for you

>

5/47

-
Why Use an HDL?

Simplified & faster design process

Explore larger solution space
o Smaller, faster, lower power
e Throughput vs. latency
e Examine more design tradeoffs
Lessen the time spent debugging the design
o Design errors still possible, but in fewer places
o Generally easier to find and fix
Can reuse design to target different technologies
e Don’t manually change all transistors for rule change

>

6/47

-
Other Important HDL Features

Are highly portable (text)
Are self-documenting (when commented well)
Describe multiple levels of abstraction

Represent parallelism

Provides many descriptive styles

e Structural
o Register Transfer Level (RTL)
e Behavioral

Serve as input for synthesis tools

>

7/47

-
Verilog

@ In this class, we will use the Verilog HDL
o Used in academia and industry

o VHDL is another common HDL
@ Also used by both academia and industry

@ Many principles we will discuss apply to any HDL

@ Once you can “think hardware”, you should be able to use any HDL
fairly quickly

>

8/47

Verilog Module

In Verilog, a circuit is a module.

module decoder 2 to_4 (A, D) ;

input [1:0] A ;
output [3:0] D ;

assign D = (A == 2°b00) 7 4’b0001 :
(A == 2°b01) 7 4°b0010 :
(A == 2°b10) 7 4°b0100 :
(A == 2°b11) 7 4°b1000 ;
endmodule
A[L0] —2—| decoder | % pi3g)
2 to4 ~

9/47

-
Declaring A Module

Can't use keywords as module/port/signal names
o Choose a descriptive module name

Indicate the ports (connectivity)

Declare the signals connected to the ports
o Choose descriptive signal names

Declare any internal signals

Write the internals of the module (functionality)

>

10/47

Declaring Ports

@ A signal is attached to every port
@ Declare type of port
e input
e output
o inout (bidirectional)
@ Scalar (single bit) - don't specify a size
e input cin;
@ Vector (multiple bits) - specify size using range
Range is MSB to LSB (left to right)
Don't have to include zero if you don't want to... (D[2:1])
output [7:0] OUT;
input [1:0] IN;

>

11/47

|
Your turn(1/2)

Using VerilogHDL to declare an interface (module name and ports) of

following hardware

start ——>
pause — >

counter_box
count_up —|

count_down ——>

8
—+—> counter_out

||

clk reset

>

12/47

|
Your turn (2/2)

Using VerilogHDL to declare an interface (module name and ports) of
following hardware

img_preprocessing img_classification
_8) img_valid dataout_valid o datain_valid
—+—{ img_data dataout datain
—— imgstart dataout_start datain_start
——{img_end dataout_end datain_end
«— pre_ready img_ready ready
object_predict 8,

clk
reset

>
&)

13/47

-
Module Styles

@ Modules can be specified different ways

o Structural — connect primitives and modules
e RTL — use continuous assignments
o Behavioral — use initial and always blocks

@ A single module can use more than one method!
@ What are the differences?

>

14 /47

Structural

@ A schematic in text form
@ Build up a circuit from gates/flip-flops

o Gates are primitives (part of the language)
o Flip-flops themselves described behaviorally
@ Structural design
Create module interface
Instantiate the gates in the circuit

Declare the internal wires needed to connect gates
Put the names of the wires in the correct port locations of the gates

o For primitives, outputs always come first

>

15/47

Structural Example

module majority (major, V1, V2, V3);

output major; V1

input V1, V2, V3; V2

wire N1, N2, N3; V2

V3

and AO (Nl, Vl: VQ)’ V3
A1 (N2, V2, V3),

() Val

A2 (N3, V3, Vi1);
or 0r0 (major, N1, N2, N3);
endmodule

>

16 /47

RTL Example
module majority (major, V1, V2, V3); N1
P V1
output major;
input V1, V2, V3; V2
V2 b Major
assign major = V1 & V2 V3
| V2 & V3 V3
| V1 & V3; V1
endmodule

>

17/47

|
Behavioral Example

module majority (major, V1, V2, V3);
output reg major;
input V1, V2, V3;

always @(V1, V2, V3) begin
if (V1 && V2)
1 (V2 && V3)
|1 (V1 && V3)) begin
major = 1;
end
else begin
major = O;
end

end

[
endmodule ‘Bg

|
Adder Example

A=A HALF € J—[}Cout
B — g ADDER g A mane ©
Cin g ADDER ¢
A U2A Cout
\
B 7# sum

>

19/47

N
Full Adder: Structural

module full_add (A, B, CI, S, CO);
input A, B, CI;
output S, CO;

le half _add (X, Y
module half_a X, v, wire S1, C1, C2;

S, C);
i t X, Y;
izzuut s e // full adder from 2 half-adders
P P half_add PARTSUM (A, B, S1, C1);

xor SUM (S, X, Y);
and CARRY (C, X, Y);
endmodule

half_add SUM (S1, CI, S, C2);

// OR gate for the carry
or CARRY (CO, C2, C1);

endmodule c

|
Full Adder: RTL/Dataflow

module fa_rtl (A, B, CI, S, CO);
input A, B, CI;
output S, CO;

// use continuous assignments

assign S = A~ B ° CI;

assign CO = (A & B) | (A& CI) | (B & CID);
endmodule

N
Full Adder: Behavioral

o Circuit “reacts” to given events (for simulation)
e Actually list of signal changes that affect output

module fa_bhv (A, B, CI, S, CO);
input A, B, CI;
output S, CO;
reg S, CO; // explained in later lecture - "holds" wvalues

// use procedural assignments
always @(A or B or CI) begin
S=A"B " CI;
C0O=(A&B) | (A& CI) | (B&CD;
end

endmodule &

N
Full Adder: Behavioral

o IN SIMULATION
e When A, B, or C change, S and CO are recalculated
o IN REALITY

e Combinational logic — no “waiting"” for the trigger
o Constantly computing - think transistors and gates!
e Same hardware created for this and RTL example

,,,,,,,,,,,,,,,,,,,

) |

— —— sum
always @ (A or B or CI) iy ‘
begin 1 3
S=A"B "~ CI; ! !
A l

CO=((A&B) | (A&CI) B majority —— Cout
| (B & CI); Cin —

end N

23/47

Structural Basics: Primitives

@ Build design up from the gate/flip-flop/latch level
o Flip-flops actually constructed using Behavioral
@ Verilog provides a set of gate primitives

and, nand, or, nor, xor, xnor, not, buf, bufifl, etc.
Combinational building blocks for structural design
Known “behavior”

Cannot access “inside” description

@ Can also model at the transistor level
e Most people don't, we won't

>

24 /47

Primitives

@ No declarations - can only be instantiated
@ Output port appears before input ports
e Optionally specify: instance name and/or delay (discuss delay later)
and N25 (Z, A, B, C); // name specified
and #10 (Z, A, B, X),
X, ¢, D, E); // delay specified, 2 gates
and #10 N30 (Z, A, B); // name and delay specified

>

25 /47

Verilog Primitives

@ 26 pre-defined primitives

@ Output is the first port

] n-input \ n-output 3-states ‘

and buf
nand not
or bufifO
nor bufifi
xor notifO
xnor notif1l

D

Usage:
nand (y, a, b, c);
nand N1(y, a, b, c);
o Keyword: nand
o Output: y
@ Input: a, b, c
e Ending mark: ;
°

Instance name (optional):

-
Syntax For Structural Verilog

@ First declare the interface to the module

o Module keyword, module name
o Port names/types/sizes

@ Next, declare any internal wires using “wire”
o wire [3:0] partialsum;

@ Then instantiate the primitives/submodules
e Indicate which signal is on which port

>

27 /47

-
Again: Structural Example

module majority (major, V1, V2, V3);

output major; V1

input V1, V2, V3; V2

wire N1, N2, N3; V2

V3

and AO (Nl, Vl: VQ)’ V3
A1 (N2, V2, V3),

() Val

A2 (N3, V3, Vi1);
or 0r0 (major, N1, N2, N3);
endmodule

>

28 /47

Your turn

Using the Verilog structural style, describe the following circuit

0! SO S
SIS

Y

o

X3
X4

L7

—@

:}— h

29 /47

Example: Combinational Gray code

Using the Verilog structural style, describe the following expressions
52+ = R75t.52.50 + Ristslsio
5/ = Rst.5;.5 + Rst.51.%
Sar = Rst.5,.51 + Rst.5,.5;

-
Datatypes

@ Two categories

o Nets
o "Registers”

@ Only dealing with nets in structural Verilog

@ “Register” datatype doesn't actually imply an actual register...
o Will discuss this when we discuss Behavioral Verilog

>

31/47

-
Net Types

@ wire: most common, establishes connections
o Default value for all signals
@ tri: indicates will be output of a tri-state
o Basically same as “wire”
@ supplyO, supplyl: ground & power connections
e Can imply this by saying “0" or “1" instead
e xor xorgate(out, a, 1°bl);
@ wand, wor, triand, trior, triO, tril, trireg
e Perform some signal resolution or logical operation
o Not used in this course

>

32/47

Structural Verilog: Connections

"Positional” or "Implicit” port connections

o Used for primitives (first port is output, others inputs)
e Can be okay in some situations

Designs with very few ports

Interchangeable input ports (and/or/xor gate inputs)
o Gets confusing for large #s of ports
@ Can specify the connecting ports by name

Helps avoid "misconnections”
Don't have to remember port order
Can be easier to read

.< port name>(<signal name>)

>

33/47

Connections Examples

start —>|

pause — ! 8
counter_box ——> counter_out

|]

clk reset

count_up ——

count_down —|

module counter_box(input clk, reset, start, pause,
input counter_up, counter_down,
output [7:0] counter_out);

@ Variables defined in upper level module

module top_module_name (.....);
wire clk, rst;
wire start, pause, counter_up, counter_down; ~
wire [7:0] counter out; ‘Bg

endmodule 34/47

Connections Examples

module counter_box(input clk, reset, start, pause,
input counter_up, counter_down,
output [7:0] counter_out);

@ Connect module by position.

module top_module_name (.....)
wire clk, rst;
wire start, pause, counter_up, counter_down;
wire [7:0] counter_out;

counter_box Ul(clk, rst, start, pause,
counter_up, counter_down,
counter_out) ;

BK
endmodule &

-
Connections Examples

module counter_box(input clk, reset, start, pause,
input counter_up, counter_down,
output [7:0] counter_out);

@ Connect module by name.

module top_module_name (.....);
wire clk, rst;
wire start, pause, counter_up, counter_down;
wire [7:0] counter out;

counter_box U2(.clk(clk), .reset(rst), .pause(pause),
.counter_up(counter_up), .counter_down(counter_down),
.counter_out(counter_out), .start(start));

[
endmodule ‘Bg

Both cases are the same connections
36 /47

|
Empty Port Connections(1/2)

module top_module_name_emply_example (.....)

wire clk, rst;

wire start, pause, counter_up, counter_down;

wire [7:0] counter_outUl, counter outU2,;

// missing imput connections,

// reset, pause, and counter_down are high timpedence (z)

counter_box U3(.clk(clk), .reset(),
.counter_up(counter_up), .counter_down(),
.counter_out (counter_outU1l), .start(start));

// missing output connections,
// counter out [7:5] unused
counter_box U4(.clk(clk), .reset(), .pause(pause),
.counter_up(counter_up), .counter_down(counter_dowﬁga
.counter_out (counter_outU2[4:0]), .start(start)); @<
endmodule

|
Empty Port Connections(2/2)

o General rules
e Empty input ports = high impedance state (z)
e Empty output ports = output not used
@ Specify all input ports anyway!
e Usually don't want z as input
o Clearer to understand & find problems

@ Helps if no connection to name port, but leave empty:

counter_box U4(.clk(clk), .reset(1’b0), .pause(pause),
.counter_up(counter_up), .counter_down(counter_down),
.counter_out (counter outU2), .start(start));

counter_box U5(.clk(clk), .reset(), .pause(pause),
.counter_up(counter_up), .counter_down(counter_downglly
.counter_out (counter_outU2), .start(start)); ‘Bg

38/47

-
Hierarchy

Any Verilog design you do will be a module
This includes testbenches!

Interface (“black box” representation)
e Module name, ports
Definition

o Describe functionality of the block
e Includes interface

Instantiation

o Use the module inside another module

>

39/47

-
Hierarchy

@ Build up a module from smaller pieces
o Primitives
o Other modules (which may contain other modules)

o Design: typically top-down
@ Verification: typically bottom-up

Full Adder Hierarchy Add_full
I 1
| Add_half || Add_half \
] i

>

40 /47

|
Add_half Module

module Add_half(c_out, sum, a, b);
output sum, c_out;
input a, b;

xor sum_bit(sum, a, b);
and carry_bit(c_out, a, b);

endmodule

|
Add_full Module

[[

| Addhalf || Addhalf |[or]

module Add_full(c_out, sum, a, b, c_in);
output sum, c_out;
input a, b, c_in;
wire wil, w2, w3;

Add_half AH1(.sum(wl), .c_out(w2), .a(a), .b(b));
Add_half AH2(.sum(sum), .c_out(w3), .a(c_in), .b(wl));
or carry_bit(c_out, w2, w3);

endmodule

>

42/47

-
Can Mix Styles In Hierarchy!

module Add_full mix(c_out, sum,
a, b, c_in);
output sum, c_out;
input a, b, c_in;
wire w1, w2, w3;

module Add_half bhv(c_out,
sum, a, b);
output reg sum, c_out;
input a, b;

always @(a, b)
begin
sum = a "~ b;
c_out = a & b;
end
endmodule

Add_half bhv AH1(.sum(wl),
.c_out(w2), .a(a), .b(b));
Add_half_bhv AH2(.sum(sum),
.c_out(w3), .a(c_in), .b(wl));
assign c_out = w2 | w3;
endmodule

>

43 /47

-
Hierarchy And Scope

@ Parent cannot access “internal” signals of child

@ If you need a signal, must make a port!

module add8bit(cout, sum, a, b);
output [7:0] sum;

Example: output cout;

Detecting overflow input [7:0] a, b;

Overflow = cout wire coutO, coutl, ..., cout6;

XOR cout6 FA AO(coutO, sum[0], al[0], b[0], 1°b0);
Must output FA Al(coutl, sum[1], a[1], b[1], cout0O);

overflow or cout6! .
FA A7(cout, sum[7], al7], bl7], cout6);

endmodule &

44/ 47

|
Homework (1)

Using module Add_half, structural styles to describe a 32-bit adder.

sum[0] sum[1] sum[2] sum[31]
I ! | |
1-bi 1-bi 1-bi 1-bi
cin=0 —| FuIIt il FuIIt < FuIIt <2l FuIIt | cout,
Adder Adder Adder Adder
I 1 [I 1 I 1
A[0] BJ0] A[l] BI1] A[2] B[2] A[31] BJ[31]

>

45 /47

|
Homework (2)

Using D_FF(D, clk, async_reset, Q), structural styles to describe a
following BCD counter.

Qo 1 Q2 Q3
Iy | |
e 5l el s
dk—> g Q R Q R Q R Q
l { { |
reset j[

46 /47

-
Hierarchy And Source Code

Can have all modules in a single file
Module order doesn't matter!

Good for small designs

Not so good for bigger ones

Not so good for module reuse (cut & paste)

Can break up modules into multiple files

@ Helps with organization
@ Lets you find a specific module easily

@ Great for module reuse (add file to project)

