Digital Design with the Verilog HDL
Chapter 4 RTL Model

Binh Tran-Thanh

May 26, 2023

1/1

-
RTL Verilog

@ Higher-level of description than structural

e Don't always need to specify each individual gate
o Can take advantage of operators

@ More hardware-explicit than behavioral

e Doesn't look as much like software
o Frequently easier to understand what's happening

@ Very easy to synthesize
e Supported by even primitive synthesizers

2/1

Continuous Assignment

@ Implies structural hardware
assign <LHS> = <RHS expression>;

@ Example
wire out, a, b;

assign out = a & b;

o If RHS result changes, LHS is updated with new value

o Constantly operating (“continuous”!)
o It's hardware!

@ Used to model combinational logic and latches

3/1

|
Full Adder: RTL/Dataflow

Example from Lecture 02

module fa_rtl (A, B, CI, S, CO);

assign CO = (A & B) | (A & CI)
| (B & CI);
endmodule

input A, B, CI;
output S, CO;
utpu AL
// use continuous assignments B
assign S =A ~ B ° CI;

Cin :]

-

N
RTL And Structural Combined

[

1

| Add_half

| | Addhalf |[or]

module Add_half (sum,
cout, a, b);
output sum, cout;
input a, b;

assign sum = a ~ b;
assign cout = a & b;
endmodule

——— e

module Add_full(c_out, sum, a, b,
c_in);
output sum, c_out;
input a, b, c_in;
wire psum, cl, c2;

Add_half AH1(partsum, cl, a, b);
Add_half AH2(sum, c2, psum, c_in);
assign c_out = cl | c2;

endmodule

—— e

5/1

-
Continuous Assignment LHS

Can assign values to
Scalar nets

Vector nets
Single bits of vector nets

Part-selects of vector nets

Concatenation of any of the above

Examples

assign out[7:4] = a[3:0] | b[7:4];
assign vall[3] = c & d;
assign {a, b} = stimulus[15:0];

—

6/1

-
Continuous Assignment RHS

Use operators

@ Arithmetic, Logical, Relational, Equality, Bitwise, Reduction, Shift,
Concatenation, Replication, Conditional

@ Same set as used in Behavioral Verilog

Can also be a pass-through!

assign a = stimulus[16:9];
assign b = stimulus[8:1];
assign cin = stimulus[0];

—

@ Note: “aliasing” is only in one direction

o Cannot give ‘a’ a new value elsewhere to set stimulus[16:9]!

7/1

Implicit Continuous Assignments

@ Can create an implicit continuous assign
@ Goes in the wire declaration
wire[3:0] sum = a + b;
@ Can be a useful shortcut to make code succinct, but doesn’t allow
fancy LHS combos
assign {cout, sum} = a + b + cin;
@ Personal choice
e You are welcome to use it when appropriate

8/1

-
Implicit Wire Declaration

@ Can create an implicit wire

@ When wire is used but not declared, it is implied

module majority(output out, input a, b, c);
assign partl = a & b;
assign part2 = a & c;
assign part3 = b & c;
assign out = partl | part2 | part3;
endmodule

—

@ Lazy! Don't do it!
o Use explicit declarations
e To design well, need to be “in tune” with design!

-
Verilog Operators

] Operator \ Name \ Group \ Example \ Precedence
[] Select b[2:1]
b[2]
{3 Concatenation Concat. {a,b}
{{}r Replication Repl. {3{a}}
! Negation (inverse) | Logical la 1 (unary)
~ Negation (not) Bit-wise ~ a
& Reduction AND Reduction | & a
| Reduction OR | a
~ & Reduction NAND ~& a
~ | Reduction NOR ~|a
A Reduction XOR A a
~ A or A ~ | Reduction XNOR ~ A a
+ Positive (unary) Arithmetic | 4+ a
- Negative (unary) —a o

-
Verilog Operators

] Operator \ Name \ Group \ Example \ Precedence \
* Multiplication Arithmetic | ax b 2 (binary)
/ Division a/ b
% Modulus a% b
+ Addition at+ b 3 (binary)
— Subtraction a—b

<< Shift left Shift a<< 4 4 (binary)
>> Shift right a>>4

> Greater Relational | a> b 5 (binary)
>= Greater or equal a>=b>o

< Less a= Less or equal a>=">

11/1

-
Verilog Operators

| Operator | Name | Group Example | Precedence |
== Equal (logic) Equal a== 6 (binary)
I = Not equal (logic) al=»>
=== Equal (case) a===
== Not equal (case) al ==
& bit-wise AND Bit-wise a&b 7 (binary)
A bit-wise XOR aA b
~ A or A ~ | bit-wise XNOR a~ADb
| bit-wise OR al b
&& logical AND Logic a&&b 8 (binary)
I logical OR all b

’ 7t | Conditional | Conditional | a? b: c | 9 (binary) |

12/1

|
Arithmetic Operators (+, —, *, /, %)

If any bit in the operands is x or z, the result will be x
Inl
In2

The result's size

@ Mul: sum of both operands

@ Others: size of the bigger operand

Inl = 4°b0010 (2) ——
_/@—» Out = 4°b1101 (13)
4°10101 (5)

In2

13/1

.
Relational Operators (<, >, <=, >=)

Ini1
:ZE>—> True/False(0/1)
In2
Inl = 52
(D
In2 = 8’Hx5
Ini 3’001
:EE>—> True(1)
3°b011
3’001 —%(5’b00001)
:ZE>—> False(0)
In2 = 5°b01011

= i - = = Ty

14/1

In2

Ini1

-
Equality Operators (==,===,1 =1 ===)
e Logical comparison (== and !=)

e The x and z values are processed as in Relative operators
o The result may be x

e Case comparison (=== and |==)
o Bitwise compare
e XxX=—=x,z==—=2z,Xxl==12

o The result is always 0 or 1

o If two operands are not the same size, 0(s) will be inserted into
MSB bits of the smaller operand

—_Data 4°p11x0;
—_Addr 4°p11x0;
—_Data == Addr //z
_ Data === Addr //1

—

15/1

-
Logical Operators (I1, &&, !)

@ Vector with at least one bit 1 is 1

o If any bit in the operands is x or z, the result will be x

ABus 4°10110;

BBus = 4’b0100;

ABus || BBus// 1

ABus && BBus// 1

! ABus // Similar to !BBus
// 0

16/1

Bit-wise Operators (&, |, ~, A, A ~)

X

(o) O] 1

A~ (xnor) | 0|1

X

X

z

X

~ (not) |0 |1

0j0(0]O0

& (and) [0 | 1

0

A(xor) |01

17/1

Reduction Operators

Dont care (X) and HighZ (Z)

% X
&(and reduction): &bpbp_1...b1 by

I}
—)

N
N

—
[Ey
—
=

¢

18/1

Reduction Operators

~ & (nand reduction): ~ &bpb,_1...b1 by

el

| (or reduction): |bpbp—1...b1bo

1| = | = O 0[O0] O
))
—s()—1 L ===

19/1

Reduction Operators

~ | (or reduction): ~ |bpby_1...b1 by

i
| 0/1

A (xor reduction): Abpbp_1...b1 by

If count (b; = 1) mod 2 == 0 then return 0;
Otherwise return 1

~ A/ ~(xnor reduction): ~ Abpb,_1...b1bg J

20/1

—
Shift Operators (<<, >>)

Shift the left operand the number of times represented by the right

operand
Shift left
B, |Bn-1 - | Bo | B1 | Bo
Bn-1|Bpn—2 -+ | B1 [Bo | 0 «=——0
Shift right

B, | Bn_1 B> | B1 | Bo

reg [0:7] Qreg;
Qreg = 4°b0111;
// 8760000 0111
Qreg >> 2;
// 87b0000_0001
Qreg = 4°dl << 5;
// 8760010_0000

—

21/1

Conditional Operator Cond_expr 7 Exprl: Expr2

o If Cond_expr includes any x bit or z bit,

the result will be a “bitwise operation”

of Exprl and Expr2 as following:
e 0&0=0
o ldl=>1
e otherwise x

@ Infinite nested conditional operator

wire[15:0] bus_a = drive_a 7?7 data :

_./* drive_a
. * drive_a
. * drive_a

— */

Cond_expr?

Expr 1

Expr 2

16°bz;

1 data %s copied to bus_a

0 bus_a %s high-Z
Tz bus_a is x

22/1

-
Concatenation and Replication Operators
o Concatenation {exprl, expr2, ... ,exprN}
e Does not work with un-sized constants

wire [7:0] Dbus;
wire [11:0] Abus;

assign Dbus[7:4] = {Dbus[0],Dbus[1],Dbus[2],Dbus[3]};

assign Dbus = {Dbus[3:0], Dbus[7:4]};
//{Dbus, 5} // mot allowed

—

@ Replication {rep_number{exprl, expr2, ... , exprN}}

Abus = {3{4°b1011}}; // 12’b1011 1011 1011
{3{1’b1}} // 111
{3{Ack}} // {Ack, Ack, Ack}

—

23/1

-
Expression Bit Lengths

| Expression | Bit length | Comments
Unsized constant number Same as inte-
ger (32 bit)
Sized constant number As given

a <op> b, where <op> is: | Max(L(a),L(b))| L(a): length (a)
+, =%/, %, [, A, ~ A
a <op> b, where <op> | 1 bit Operands are sized
is: ===, l== ==, I=, to Max(L(i),L(j))
&&, ||, >, >=,<,<=
a <op> b, where <op> is: &,~ | 1 bit
&, |, ~ [, A, ~ AL
a <op> b, where <op> is: >> | L(i)
<<

24/1

-
Example: adder4b

module adder4b (sum, c_out, a, b, c_in);
input[3:0] a, b;

input c_in;

output [3:0] sum;
output c_out;

assign{c_out, sum} = a + b + c_in;

endmodule

—

ﬂ3ﬂ]——i—»
b[3:0] —2—|

c_in —>

adder4b

—L sum[3:0]

——> c_out

25/1

-
Example: Unsigned MAC Unit

Design a multiply-accumulate (MAC) unit that computes
Z[7:0] = A[3:0]*B[3:0] + C[7:0]
It sets overflow to one, if the result cannot be represented using 8 bits.

module mac(output [7:0] Z, output overflow,
input[3:0] A, B, input[7:0] C);

26/1

-
Solution: Unsigned MAC Unit

module mac(output [7:0] Z, output overflow,
input[3:0] A, B, input[7:0] C);
wire [8:0] P;
assign P = A*B + C;
assign Z = P[7:0];
assign overflow = P[8];
endmodule

Alternative method:

module mac(output[7:0] Z, output overflow,
input[3:0] A, B, input[7:0] C);
assign {overflow, Z} = A*B + C;
endmodule

27/1

Example: Multiplexer

Use the conditional operator and a single continuous assignment statement

module mux_8_to_1(output out,
input inO, inl, in2, in3, in4, inb5, in6, in7,
input [2:0] sel);

endmodule

—

28/1

N
Latches

r:

vl

N
Latches

@ Continuous assignments with feedback

module latch(output[7:0] g_out,
input [7:0] data_in, enable);
assign q_out = enable 7 data_in: q_out;
endmodule

module latch_reset(output q_out,
input data_in, enable, reset);
assign q_out = reset 7 0 : (enable 7 data_in: gq_out);
endmodule

—

@ How would we change these for 8-bit latches?

@ How would we make the enable active low?

30/1

Example: Rock-Paper-Scissors (optional homework)

@ module rps(win, player, pOguess, plguess);
@ Assumptions:
o Input: pOguess, plguess = 0 for rock, 1 for paper, 2 for scissors
e Output: player is 0 if p0 wins, 1 if p1 wins, and don't care if there is a
tie
o Output: win is 0 if there is a tie and 1 if a player wins
@ Reminders
o Paper beats rock, scissors beats paper, rock beats scissors
e Same values tie
@ Two possible approaches

o Figure out the Boolean equations for win and player and implement
these using continuous assignments

@ Use bitwise operators

e Examine what the various items equal and do logical operations on
these

@ Use equality and logical operators

31/1

Draw synthesized hardware of following verilogHDL

wire [3:0] a, b, c;
wire [7:0] 4;

assign ¢ = d[7:4] + b;
assign d = a * b;

—

wire [3:0] a, b, c;
assign ¢ = !la && b 7 a + b: a - b;

—

32/1

Take away message

@ Using continuous assign: assign LHS = RHS.
@ Operation and its order.

@ Length of inputs, output.

33/1

