
Digital Design with the Verilog HDL
Chapter 4 RTL Model

Binh Tran-Thanh

May 26, 2023

1 / 1

RTL Verilog

Higher-level of description than structural
Don’t always need to specify each individual gate
Can take advantage of operators

More hardware-explicit than behavioral
Doesn’t look as much like software
Frequently easier to understand what’s happening

Very easy to synthesize
Supported by even primitive synthesizers

2 / 1

Continuous Assignment

Implies structural hardware
assign <LHS> = <RHS expression>;

Example

wire out, a, b;
assign out = a & b;

If RHS result changes, LHS is updated with new value
Constantly operating (“continuous”!)
It’s hardware!

Used to model combinational logic and latches

3 / 1

Full Adder: RTL/Dataflow

Example from Lecture 02

module fa_rtl (A, B, CI, S, CO);
input A, B, CI;
output S, CO;

// use continuous assignments
assign S = A ˆ B ˆ CI;
assign C0 = (A & B) | (A & CI)

| (B & CI);
endmodule

fa rtl

A

B

sum

Cin

Cout

4 / 1

RTL And Structural Combined

Add full

Add halfAdd half or

module Add_half(sum,
cout, a, b);

output sum, cout;
input a, b;

assign sum = a ˆ b;
assign cout = a & b;

endmodule

module Add_full(c_out, sum, a, b,
c_in);

output sum, c_out;
input a, b, c_in;
wire psum, c1, c2;

Add_half AH1(partsum, c1, a, b);
Add_half AH2(sum, c2, psum, c_in);
assign c_out = c1 | c2;

endmodule

5 / 1

Continuous Assignment LHS

Can assign values to
Scalar nets
Vector nets
Single bits of vector nets
Part-selects of vector nets
Concatenation of any of the above

Examples

assign out[7:4] = a[3:0] | b[7:4];
assign val[3] = c & d;
assign {a, b} = stimulus[15:0];

6 / 1

Continuous Assignment RHS

Use operators
Arithmetic, Logical, Relational, Equality, Bitwise, Reduction, Shift,
Concatenation, Replication, Conditional
Same set as used in Behavioral Verilog

Can also be a pass-through!

assign a = stimulus[16:9];
assign b = stimulus[8:1];
assign cin = stimulus[0];

Note: “aliasing” is only in one direction
Cannot give ‘a’ a new value elsewhere to set stimulus[16:9]!

7 / 1

Implicit Continuous Assignments

Can create an implicit continuous assign
Goes in the wire declaration
wire[3:0] sum = a + b;

Can be a useful shortcut to make code succinct, but doesn’t allow
fancy LHS combos
assign {cout, sum} = a + b + cin;
Personal choice

You are welcome to use it when appropriate

8 / 1

Implicit Wire Declaration

Can create an implicit wire
When wire is used but not declared, it is implied

module majority(output out, input a, b, c);
assign part1 = a & b;
assign part2 = a & c;
assign part3 = b & c;
assign out = part1 | part2 | part3;

endmodule

Lazy! Don’t do it!
Use explicit declarations
To design well, need to be “in tune” with design!

9 / 1

Verilog Operators

Operator Name Group Example Precedence
[] Select b[2:1]

b[2]
{} Concatenation Concat. {a,b}

{{}} Replication Repl. {3{a}}

! Negation (inverse) Logical !a 1 (unary)
∼ Negation (not) Bit-wise ∼ a
& Reduction AND Reduction & a
| Reduction OR | a
∼ & Reduction NAND ∼ & a
∼ | Reduction NOR ∼ | a
∧ Reduction XOR ∧ a

∼ ∧ or ∧ ∼ Reduction XNOR ∼ ∧ a
+ Positive (unary) Arithmetic + a
− Negative (unary) − a 10 / 1

Verilog Operators

Operator Name Group Example Precedence
∗ Multiplication Arithmetic a∗ b 2 (binary)
/ Division a/ b
% Modulus a% b

+ Addition a+ b 3 (binary)
− Subtraction a− b

<< Shift left Shift a<< 4 4 (binary)
>> Shift right a>> 4
> Greater Relational a> b 5 (binary)

>= Greater or equal a>= b
< Less a< b

>= Less or equal a>= b

11 / 1

Verilog Operators

Operator Name Group Example Precedence
== Equal (logic) Equal a== b 6 (binary)
! = Not equal (logic) a! = b

=== Equal (case) a=== b
! == Not equal (case) a! == b

& bit-wise AND Bit-wise a&b 7 (binary)
∧ bit-wise XOR a∧ b

∼ ∧ or ∧ ∼ bit-wise XNOR a∼ ∧ b
| bit-wise OR a| b

&& logical AND Logic a&&b 8 (binary)
‖ logical OR a‖ b

?: Conditional Conditional a? b: c 9 (binary)

12 / 1

Arithmetic Operators (+,−, ∗, /, %)

If any bit in the operands is x or z, the result will be x

f
In1

In2
Out

The result’s size
Mul: sum of both operands
Others: size of the bigger operand

-In1 = 4’b0010 (2)

In2 = 4’b0101 (5)
Out = 4’b1101 (13)

13 / 1

Relational Operators (<, >, <=, >=)

f
In1

In2
True/False(0/1)

f
In1 = 52

In2 = 8’Hx5
X

<
In1 = 3’b001

In2 = 3’b011
True(1)

>
In1 = 3’b001 → (5’b00001)

In2 = 5’b01011
False(0)

14 / 1

Equality Operators (==, ===, ! =, ! ===)

Logical comparison (== and !=)
The x and z values are processed as in Relative operators
The result may be x

Case comparison (=== and !==)
Bitwise compare
x === x, z === z, x !== z
The result is always 0 or 1

If two operands are not the same size, 0(s) will be inserted into
MSB bits of the smaller operand

Data = 4’b11x0;
Addr = 4’b11x0;
Data == Addr //x
Data === Addr //1

15 / 1

Logical Operators (||, &&, !)

Vector with at least one bit 1 is 1
If any bit in the operands is x or z, the result will be x

ABus = 4’b0110;
BBus = 4’b0100;
ABus || BBus// 1
ABus && BBus// 1
!ABus // Similar to !BBus

// 0

16 / 1

Bit-wise Operators (&, |,∼,∧,∧ ∼)

& (and) 0 1 x z
0 0 0 0 0
1 0 1 x x
x 0 x x x
z 0 x x x

∧ (xor) 0 1 x z
0 0 1 x x
1 1 0 x x
x x x x x
z x x x x

| (or) 0 1 x z
0 0 1 x x
1 1 1 1 1
x x 1 x x
z x 1 x x

∧ ∼ (xnor) 0 1 x z
0 1 0 x x
1 0 1 x x
x x x x x
z x x x x

∼ (not) 0 1 x z
1 0 x x

17 / 1

Reduction Operators

Dont care (X) and HighZ (Z)

.. X

f X

.. Z

f Z

&(and reduction): &bnbn−1...b1b0

.. 0

& 0

1 1 1 1

& 1

18 / 1

Reduction Operators

∼ & (nand reduction): ∼ &bnbn−1...b1b0

..

& ∼ 0/1

| (or reduction): |bnbn−1...b1b0

.. 1

| 1

0 0 0 0

| 0

19 / 1

Reduction Operators

∼ | (or reduction): ∼ |bnbn−1...b1b0

..

| ∼ 0/1

∧ (xor reduction): ∧bnbn−1...b1b0

If count (bi = 1) mod 2 == 0 then return 0;
Otherwise return 1

∼ ∧/∧ ∼(xnor reduction): ∼ ∧bnbn−1...b1b0

20 / 1

Shift Operators (<<, >>)

Shift the left operand the number of times represented by the right
operand

Shift left

Bn Bn−1 ... B2 B1 B0

Bn−1 Bn−2 ... B1 B0 0 0

Shift right

Bn Bn−1 ... B2 B1 B0

0 Bn ... B3 B2 B10

reg [0:7] Qreg;
Qreg = 4’b0111;

// 8’b0000_0111
Qreg >> 2;

// 8’b0000_0001
Qreg = 4’d1 << 5;

// 8’b0010_0000

21 / 1

Conditional Operator Cond_expr ? Expr1: Expr2

If Cond expr includes any x bit or z bit,
the result will be a “bitwise operation”
of Expr1 and Expr2 as following:

0 ♣ 0 ⇒ 0
1 ♣ 1 ⇒ 1
otherwise x

Infinite nested conditional operator

Cond_expr?

Expr 1 Expr 2

Yes

No

wire[15:0] bus_a = drive_a ? data : 16’bz;
/* drive_a = 1 data is copied to bus_a
* drive_a = 0 bus_a is high-Z
* drive_a = x bus_a is x
*/

22 / 1

Concatenation and Replication Operators

Concatenation {expr1, expr2, ... ,exprN}
Does not work with un-sized constants

wire [7:0] Dbus;
wire [11:0] Abus;
assign Dbus[7:4] = {Dbus[0],Dbus[1],Dbus[2],Dbus[3]};
assign Dbus = {Dbus[3:0], Dbus[7:4]};
//{Dbus, 5} // not allowed

Replication {rep_number{expr1, expr2, ... , exprN}}

Abus = {3{4’b1011}}; // 12’b1011_1011_1011
{3{1’b1}} // 111
{3{Ack}} // {Ack, Ack, Ack}

23 / 1

Expression Bit Lengths

Expression Bit length Comments
Unsized constant number Same as inte-

ger (32 bit)
Sized constant number As given
a <op> b, where <op> is:
+,−, ∗, /, %, |,∧,∼ ∧

Max(L(a),L(b)) L(a): length (a)

a <op> b, where <op>
is: ===,!==,==, !=,

&&, ||, >, >=, <, <=

1 bit Operands are sized
to Max(L(i),L(j))

a <op> b, where <op> is: &,∼
&, |,∼ |,∧,∼ ∧, !

1 bit

a <op> b, where <op> is: >>
, <<

L(i)

24 / 1

Example: adder4b

module adder4b (sum, c_out, a, b, c_in);
input[3:0] a, b;
input c_in;
output[3:0] sum;
output c_out;

assign{c_out, sum} = a + b + c_in;

endmodule

adder4b
a[3:0]
b[3:0]

c in

sum[3:0]

c out

/
4

/
4 /

4

25 / 1

Example: Unsigned MAC Unit

Design a multiply-accumulate (MAC) unit that computes
Z[7:0] = A[3:0]*B[3:0] + C[7:0]
It sets overflow to one, if the result cannot be represented using 8 bits.

module mac(output [7:0] Z, output overflow,
input[3:0] A, B, input[7:0] C);

26 / 1

Solution: Unsigned MAC Unit

module mac(output [7:0] Z, output overflow,
input[3:0] A, B, input[7:0] C);

wire [8:0] P;
assign P = A*B + C;
assign Z = P[7:0];
assign overflow = P[8];

endmodule

Alternative method:

module mac(output[7:0] Z, output overflow,
input[3:0] A, B, input[7:0] C);

assign {overflow, Z} = A*B + C;
endmodule

27 / 1

Example: Multiplexer

Use the conditional operator and a single continuous assignment statement

module mux_8_to_1(output out,
input in0, in1, in2, in3, in4, in5, in6, in7,
input[2:0] sel);

endmodule

28 / 1

Latches

D Q
Enable

29 / 1

Latches

Continuous assignments with feedback

module latch(output[7:0] q_out,
input[7:0] data_in, enable);

assign q_out = enable ? data_in: q_out;
endmodule

module latch_reset(output q_out,
input data_in, enable, reset);

assign q_out = reset ? 0 : (enable ? data_in: q_out);
endmodule

How would we change these for 8-bit latches?
How would we make the enable active low?

30 / 1

Example: Rock-Paper-Scissors (optional homework)

module rps(win, player, p0guess, p1guess);
Assumptions:

Input: p0guess, p1guess = 0 for rock, 1 for paper, 2 for scissors
Output: player is 0 if p0 wins, 1 if p1 wins, and don’t care if there is a
tie
Output: win is 0 if there is a tie and 1 if a player wins

Reminders
Paper beats rock, scissors beats paper, rock beats scissors
Same values tie

Two possible approaches
Figure out the Boolean equations for win and player and implement
these using continuous assignments

Use bitwise operators
Examine what the various items equal and do logical operations on
these

Use equality and logical operators
31 / 1

Draw synthesized hardware of following verilogHDL

wire [3:0] a, b, c;
wire [7:0] d;
assign c = d[7:4] + b;
assign d = a * b;

wire [3:0] a, b, c;
assign c = !a && b ? a + b: a - b;

32 / 1

Take away message

Using continuous assign: assign LHS = RHS.
Operation and its order.
Length of inputs, output.

33 / 1

