Digital Design with the Verilog HDL
Chapter 5 Behavioral Model - part 1

Binh Tran-Thanh

Department of Computer Engineering
Faculty of Computer Science and Engineering
Ho Chi Minh City University of Technology

May 26, 2023

Behavioral Verilog

Use procedural blocks: initial, always
These blocks contain series of statements

o Abstract — works *somewhat* like software
o Be careful to still remember it's hardware!

Parallel operation across blocks
o All blocks in a module operate simultaneously

Sequential or parallel operation within blocks

o Depends on the way the block is written
e Discuss this in a later lecture

@ LHS of assignments are variables(reg)

>

2/22

-
Types of Blocks

initial
@ Behavioral block operates ONCE
e Starts at time 0 (beginning of operation)
@ Useful for test benches

o Can sometimes provide initialization of memories/FFs
o Often better to use "reset” signal

Inappropriate for combinational logic

Usually cannot be synthesized

always
@ Behavioral block operates CONTINUOUSLY

o Can use a trigger list to control operation; @(a, b, c)

3/22

initial vs. always

initial always
regl[7:0] vi, v2, v3, v4; regl[7:0] v1, v2, v3, v4;
initial begin always begin
vl = 1; vi = 1;
#2 v2 = vl + 1; #2 v2 = vl + 1;
v3 = v2 + 1; v3 = v2 + 1;
#2 v4 = v3 + 1; #2 v4 = v3 + 1;
vi =v4 + 1; vi =v4d + 1;
#2 v2 = vl + 1; #2 v2 = vl + 1;
v3 = v2 + 1; v3 = v2 + 1;
end end

What values does each block produce?
o~

4/22

N
initial Blocks

‘timescale 1ns /lns
module t_full adder;
reg [3:0] stim;
wire s, c;
// instantiate UUT
full_adder(sum, carry, stim[2], stim[1], stim[0]);
// monitor statement is special - only needs to be made
once,
initial $monitor("%t: s=Y%b c=Jb stim=%b", $time, s, c,
stim[2:0]);
// tell our simulation when to stop
initial #50 $stop;
initial begin // stimulus generation
for (stim = 4°d0; stim < 4°d8; stim = stim + 1) begin
#5;
end
end
endmodule

always Blocks

Operates continuously or on a trigger list
Can be used with initial blocks
Cannot "nest” initial or always blocks

Useful example of continuous always block:

reg clock;
initial clock = 1°Db0;
always #10 clock = “clock;

Clock generator goes in the testbench

>

6/22

always blocks with trigger lists

o Conditionally "execute” inside of always block

o Always block continuously operating
o If trigger list present, continuously checking triggers
o Any change on trigger (sensitivity) list, triggers block

always @(a, b, c) begin

end

@ Sounds like software! It isn't!

e This is how the simulator treats it
e The hardware has the same resulting operation, but ...

o See examples in later slides to see what is actually created

>

7/22

-
Trigger Lists

@ Uses "event control operator” @
@ When net or variable in trigger list changes, always block is triggered

always @(a, b, c) begin
al = a & b;
a2 = b & c;
a3 = a & c;
carry = al | a2 | a3;

always @(state, in) begin
if(in == 1°b0) begin
if (state != 2’b11)
nextstate = state + 1;

d
en else
T tstate = 2’b00;
always @(inl, inO, sel) begin ond nex ©

if (sel== 1’b0)

. else
out = in0;
nextstate = state;

1
end._. ‘

8/22

Event or

o Original way to specify trigger list always @ (X1 or X2 or X3)

@ In Verilog 2001 can use ,instead of or always @ (X1, X2, X3)
@ Verilog 2001 also has * for combinational only always @(*)

o Shortcut that includes all nets/variables used on RHS in statements in
the block
o Also includes variable used in if statements; if (x)

@ You may be asked to specify input s to trigger list without *

>

9/22

-
Edge Triggering

@ A negedge is on the transitions

el1l—>x20
ox,z—)O

@ A posedge is on the transitions

e 0—x121
e x,z—1

@ Used for clocked (synchronous) logic

always @(posedge clk)
register <= register_input ;

>

10/22

-
Example: DFF

Remember LHS in always block is always declared as reg.

module dff (output reg q, input d, input clk);
always @(posedge clk) begin
q <= d;
end
endmodule

module dff_reset(output reg q, input d, clk, reset);
always @(posedge clk, negedge reset) begin
if(lreset) q <= d;
else q <= 0;
end
endmodule

>

11/22

N
DFF with Set Control

to

Q box

Q xoxx

D | xxx

t

ty

te

reset | Xxx

tg

to tio

set | Xxx

clk

1

1

1

1

1

1

1

.

module dff (output q, gbar, input reset, set, data, clk);

reg ...;

always @(posedge clk) begin

end
endmodule

>

12/22

Procedural Assignments

e Used within a behavioral block (initial, always)
o Types
o = // blocking assignment
e <= // non-blocking assignment
@ Assignments to variables:
reg
integer
real
realtime
time

-
Blocking Assignments

o "Evaluated” sequentially
e Works a lot like software (danger!)

@ Used for combinational logic

module addtree(output reg[9:0] out, . o
input [7:0] inl, in2, in3, in4); it in2 i3 ind
reg[8:0] partl, part2;

always @(inl, in2, in3, in4)

. partl part2
begin

partl = inl + in2;

part2 = in3 + in4; +

out = partl + part2; l
end

t
endmodule o ‘Bg

Non-Blocking Assignments

o "Updated” simultaneously if no delays given
o Used for sequential logic

module swap(output reg outO, outl,
input rst, clk);

always @(posedge clk) begin —D Q out0
if (rst) begin rst to 0
out0 <= 1°b0; R Q
outl <= 1’bl;

end
else begin
D Q outl

out0 <= outl;
rst rst to 1

outl <= outO; _
end clk Q

N
end)

endmodule

15/22

]
Swapping
@ In blocking, need a "temp” variable

module swap(output reg outO, outl,
input inO, inl, swap);

reg temp;
inl
always @(*) begin i1
out0 = in0; n
outl = ini; swap

if (swap) begin
temp = outO;
outO = outl;
outl
end
end
endmodule

temp;

-
Blocking & Non-Blocking Example

reg[7:0] A, B, C, D; reg[7:0] A, B, C, D;

always @(posedge clk) begin always @(posedge clk) begin

A =B + C; A <= B + C;

B=A+D; B <= A + D;

C=A+ B; C <= A + B;

D =B + D; D <= B + D;
end end

@ Assume initially that A=1,B=2, C=3and D =4

@ Note: shouldn’t use blocking with sequential!

-
Correcting The Example

reg[7:0] A, B, C, D;
reg[7:0] newA, newB, newC, newD;
always @(posedge clk) begin regl7:0] 4, B, C, D;
A <= newA; B <= newB;
C <= newC; D <= newD;
end

always @(posedge clk)
begin
A <= B + C;
B<=B+ C + D;
C<=B+C+ B+ C +D;
D<=B +C+ D + D;
end

always @(*) begin
newA = B + C;

newA + D;

newC newA + newB;

newD newB + D;

[
end ‘35'

18/22

newB

-
Why Not '="In Sequential?

Yes, it can "work”, but...
@ <= models pipeline stages better
@ = can cause problems if multiple always blocks
@ Order of statements is important with =

Use the style guidelines given!
o <= for sequential block
e = for combinational block

@ Don't mix in same block!

-
Shift Register: Blocking

module shiftreg(A, E, clk, rst);

output A;

input E, clk, rst;

reg A, B, C, D;

always @ (posedge clk or posedge rst) begin
if(rst) begin A = 0; B=0; C=0; D= 0; end
else begin A =B; B=C; C=D; D =E;
end// option 1

//else begin D = E; C =D; B=2C; A = B;

//end// option 2
end

endmodule
&
@ What do we get with each option?

Shift Register: Blocking

E—D Q—A

Rst 6
clk

rst

The order is matters!

E—D Q D

Rst

Q|

Rst

Q|

Q|

Rst

Lol
clk — .

21/22

Combinational vs. Sequential

Combinational
@ Not edge-triggered
@ All "input s" (RHS nets/variables) are triggers

@ Does not depend on clock

Sequential
o Edge-triggered by clock signal
@ Only clock (and possibly reset) appear in trigger list

@ Can include combinational logic that feeds a FF or register

