
Digital Design with the Verilog HDL
Chapter 5 Behavioral Model - part 1

Binh Tran-Thanh

Department of Computer Engineering
Faculty of Computer Science and Engineering
Ho Chi Minh City University of Technology

May 26, 2023

1 / 22



Behavioral Verilog

Use procedural blocks: initial, always
These blocks contain series of statements

Abstract – works *somewhat* like software
Be careful to still remember it’s hardware!

Parallel operation across blocks
All blocks in a module operate simultaneously

Sequential or parallel operation within blocks
Depends on the way the block is written
Discuss this in a later lecture

LHS of assignments are variables(reg)

2 / 22



Types of Blocks

initial
Behavioral block operates ONCE
Starts at time 0 (beginning of operation)
Useful for test benches
Can sometimes provide initialization of memories/FFs

Often better to use ”reset” signal
Inappropriate for combinational logic
Usually cannot be synthesized

always
Behavioral block operates CONTINUOUSLY
Can use a trigger list to control operation; @(a, b, c)

3 / 22



initial vs. always

initial

reg[7:0] v1, v2, v3, v4;
initial begin

v1 = 1;
#2 v2 = v1 + 1;

v3 = v2 + 1;
#2 v4 = v3 + 1;

v1 = v4 + 1;
#2 v2 = v1 + 1;

v3 = v2 + 1;
end

always

reg[7:0] v1, v2, v3, v4;
always begin

v1 = 1;
#2 v2 = v1 + 1;

v3 = v2 + 1;
#2 v4 = v3 + 1;

v1 = v4 + 1;
#2 v2 = v1 + 1;

v3 = v2 + 1;
end

What values does each block produce?

4 / 22



initial Blocks
‘timescale 1ns /1ns
module t_full_adder;

reg [3:0] stim;
wire s, c;
// instantiate UUT
full_adder(sum, carry, stim[2], stim[1], stim[0]);
// monitor statement is special - only needs to be made

once,
initial $monitor("%t: s=%b c=%b stim=%b", $time, s, c,

stim[2:0]);
// tell our simulation when to stop
initial #50 $stop;
initial begin // stimulus generation

for (stim = 4’d0; stim < 4’d8; stim = stim + 1) begin
#5;

end
end

endmodule
5 / 22



always Blocks

Operates continuously or on a trigger list
Can be used with initial blocks
Cannot ”nest” initial or always blocks
Useful example of continuous always block:

reg clock;
initial clock = 1’b0;
always #10 clock = ˜clock;

Clock generator goes in the testbench

6 / 22



always blocks with trigger lists

Conditionally ”execute” inside of always block
Always block continuously operating
If trigger list present, continuously checking triggers
Any change on trigger (sensitivity) list, triggers block

always @(a, b, c) begin
...

end

Sounds like software! It isn’t!
This is how the simulator treats it
The hardware has the same resulting operation, but ...

See examples in later slides to see what is actually created

7 / 22



Trigger Lists
Uses ”event control operator” @
When net or variable in trigger list changes, always block is triggered

always @(a, b, c) begin
a1 = a & b;
a2 = b & c;
a3 = a & c;
carry = a1 | a2 | a3;

end

always @(in1, in0, sel) begin
if(sel== 1’b0)

out = in0;
else

out = in1;
end

always @(state, in ) begin
if(in == 1’b0) begin

if(state != 2’b11)
nextstate = state + 1;

else
nextstate = 2’b00;

end
else

nextstate = state;
end

8 / 22



Event or

Original way to specify trigger list always @ (X1 or X2 or X3)
In Verilog 2001 can use ,instead of or always @ (X1, X2, X3)
Verilog 2001 also has * for combinational only always @(*)

Shortcut that includes all nets/variables used on RHS in statements in
the block
Also includes variable used in if statements; if (x)

You may be asked to specify input s to trigger list without *

9 / 22



Edge Triggering

A negedge is on the transitions
1 → x, z, 0
x, z → 0

A posedge is on the transitions
0 → x, z, 1
x, z → 1

Used for clocked (synchronous) logic

always @( posedge clk)
register <= register_input ;

10 / 22



Example: DFF

Remember LHS in always block is always declared as reg.

module dff(output reg q, input d, input clk);
always @(posedge clk) begin

q <= d;
end

endmodule

module dff_reset(output reg q, input d, clk, reset);
always @(posedge clk, negedge reset) begin

if(!reset) q <= d;
else q <= 0;

end
endmodule

11 / 22



DFF with Set Control

clk xxx

set xxx

reset xxx

D xxx

Q xxx

Q̄ xxx

t0 t1 t2 t3 t4 t5 t6 t7 t8 t9 t10

module dff(output q, qbar, input reset, set, data, clk);
reg ...;
always @(posedge clk) begin

...
end

endmodule
12 / 22



Procedural Assignments

Used within a behavioral block (initial, always)
Types

= // blocking assignment
<= // non-blocking assignment

Assignments to variables:
reg
integer
real
realtime
time

13 / 22



Blocking Assignments

”Evaluated” sequentially
Works a lot like software (danger!)
Used for combinational logic

module addtree(output reg[9:0] out,
input [7:0] in1, in2, in3, in4);
reg[8:0] part1, part2;

always @(in1, in2, in3, in4)
begin

part1 = in1 + in2;
part2 = in3 + in4;
out = part1 + part2;

end
endmodule

+ +

+

in1 in2 in3 in4

out

part1 part2

14 / 22



Non-Blocking Assignments
”Updated” simultaneously if no delays given
Used for sequential logic

module swap(output reg out0, out1,
input rst, clk);

always @(posedge clk) begin
if(rst) begin

out0 <= 1’b0;
out1 <= 1’b1;

end
else begin

out0 <= out1;
out1 <= out0;

end
end

endmodule

D Q

Q̄

D Q

Q̄clk
rst

out0

out1

rst to 0

rst to 1

15 / 22



Swapping
In blocking, need a ”temp” variable

module swap(output reg out0, out1,
input in0, in1, swap);

reg temp;

always @(*) begin
out0 = in0;
out1 = in1;
if(swap) begin

temp = out0;
out0 = out1;
out1 = temp;

end
end

endmodule

0
1

0
1

in1
in2

out1

out2

swap

16 / 22



Blocking & Non-Blocking Example

reg[7:0] A, B, C, D;

always @(posedge clk) begin
A = B + C;
B = A + D;
C = A + B;
D = B + D;

end

reg[7:0] A, B, C, D;

always @(posedge clk) begin
A <= B + C;
B <= A + D;
C <= A + B;
D <= B + D;

end

Assume initially that A = 1, B = 2, C = 3, and D = 4
Note: shouldn’t use blocking with sequential!

17 / 22



Correcting The Example

reg[7:0] A, B, C, D;
reg[7:0] newA, newB, newC, newD;

always @(posedge clk) begin
A <= newA; B <= newB;
C <= newC; D <= newD;

end

always @(*) begin
newA = B + C;
newB = newA + D;
newC = newA + newB;
newD = newB + D;

end

reg[7:0] A, B, C, D;

always @(posedge clk)
begin

A <= B + C;
B <= B + C + D;
C <= B + C + B + C +D;
D <= B + C + D + D;

end

18 / 22



Why Not ’=’ In Sequential?

Yes, it can ”work”, but...
<= models pipeline stages better
= can cause problems if multiple always blocks
Order of statements is important with =

Use the style guidelines given!
<= for sequential block
= for combinational block
Don’t mix in same block!

19 / 22



Shift Register: Blocking

module shiftreg(A, E, clk, rst);
output A;
input E, clk, rst;
reg A, B, C, D;
always @ (posedge clk or posedge rst) begin

if(rst) begin A = 0; B = 0; C = 0; D = 0; end
else begin A = B; B = C; C = D; D = E;
end// option 1

//else begin D = E; C = D; B = C; A = B;
//end// option 2

end
endmodule

What do we get with each option?

20 / 22



Shift Register: Blocking

D Q

Q
Rst

E A

clk
rst

The order is matters!

D Q

Q
Rst

D Q

Q
Rst

D Q

Q
Rst

D Q

Q
Rst

E A

clk
rst

D C B

21 / 22



Combinational vs. Sequential

Combinational
Not edge-triggered
All ”input s” (RHS nets/variables) are triggers
Does not depend on clock

Sequential
Edge-triggered by clock signal
Only clock (and possibly reset) appear in trigger list
Can include combinational logic that feeds a FF or register

22 / 22


