
Digital Design with the Verilog HDL
Chapter 6 Finite State Machine

Binh Tran-Thanh

Department of Computer Engineering
Faculty of Computer Science and Engineering
Ho Chi Minh City University of Technology

May 26, 2023

1 / 29



Sequential Machine - Definition

State of a sequential machine contains current information (t)
Next state (t + 1) depends on the current state (t) and inputs
The number of states in a sequential machine finite ⇒ Finite State
Machine - FSM

Next-state
Logic Memory Present stateNext stateInput

Feedback of present state

Block Diagram of a sequential machine

2 / 29



Synchronous Sequential Machine

Synchronous State Machine uses clock to synchronize input states
Clock is symmetric or asymmetric
Clock cycle must be larger than time required for state
transaction calculation
Synchronous FSMs:

Number of states
Using clock to control state transaction

3 / 29



FSM Models & Types

Explicit
Declares a state register that stores the FSM state
May not be called “state” –might be a counter!

Implicit
Describes state implicitly by using multiple event controls

Moore
Outputs depend on state only (synchronous)

Mealy
Outputs depend on inputs and state (asynchronous)
Outputs can also be registered (synchronous)

4 / 29



Mealy machine vs. Moore machine

Block Diagram of a Mealy sequential machine

Next-state
Combina-

tional Logic

State
register

(Memory)

Output
Combina-

tional Logic

OutputInput

Clock
Feedback of present state

Block Diagram of a Moore sequential machine

Next-state
Combina-

tional Logic

State
register

(Memory)

Output
Combina-

tional Logic

OutputInput

Clock
Feedback of present state 5 / 29



State Transaction Graph

Finite state machine can be described:
State transaction graph, State transaction table
Time chart
Abstract state machine

Finite state machine is a directed graph
Vertices show states (+outputs if Moore-style machine)
Edges show transactions from state to state

Edges’ name
Mealy machine: input/output
Moore machine: input

6 / 29



State Diagram: Mealy

Outputs Y and Z are 0, unless specified otherwise.
We don’t care about the value of b in S0, or the value of a in S1, or
either a or b in S2.

S0 S1

S2

reset = 1

a,b = 1,x/
Y,Z = 0,1

a,b = x,1/
Y,Z = 1,1a,b = x,x/

Y,Z = 0,0

a,b = x,0/
Y,Z = 0,0

a,b = 0,x/
Y,Z = 0,0

7 / 29



State Diagram: Moore

Outputs Y and Z are 0, unless specified otherwise.
If an input isn’t listed for a transition, we don’t careabout its value for
that transition

S0 S1

S2

Y=1

Z=1

reset = 1

a = 1

b = 1

b = 0a = 0

8 / 29



Example - Mealy
State transition graph

S0

S1 S2

S3 S4

S5 S6

reset

1/00/1

1/0

0/1

0/0 1/1

0/0 1/1

0/1

0/1

1/0

0/0
1/1

State transition table

State
Next state/ output

input
0 1

S0 S1/1 S2/0
S1 S3/1 S4/0
S2 S4/0 S4/1
S3 S5/0 S5/1
S4 S5/1 S6/0
S5 S0/0 S0/1
S6 S0/1 -/-

9 / 29



Example

S0 S1S2

1/0

1/1

0/1

0/0

Next state/ output
State input

0 1
S0 S1/0 S2/1
S1 S0/1 -
S2 - S0/0

S0/0 S1/0

S2/1S3/1

11 00

0

1

State
Next state/ output

input
0 1

S0 S1/0 S3/1
S1 S2/1 -
S2 - S0/1
S3 S1/0 S3/0

10 / 29



Constraints

Each vertex describes only one state
Each edge describes exactly one transaction from current state to the
next state
Each vertex has all out-going edges
At one edge, there is only one out-going edge at one time

11 / 29



BCD to Excess-3 code Converter

Decimal
digit

BCD Excess-3

0 0000 0011
1 0001 0100
2 0010 0101
3 0011 0110
4 0100 0111
5 0101 1000
6 0110 1001
7 0111 1010
8 1000 1011
9 1001 1100

Excess-3 is self-complementing
610= 01102

6excess−3= 01102+ 00112 = 10012

12 / 29



Input/output Relation

Input-output bit stream in a BCD to Excess-3 serial code converter

13 / 29



State Transaction Graph – State Transaction Table
State transition graph (Mealy)

S0

S1 S2

S3 S4

S5 S6

reset

1/00/1

1/0

0/1

0/0 1/1

0/0 1/1

0/1

0/1

1/0

0/0
1/1

State transition table (Mealy)

State
Next state/ output

input
0 1

S0 S1/1 S2/0
S1 S3/1 S4/0
S2 S4/0 S4/1
S3 S5/0 S5/1
S4 S5/1 S6/0
S5 S0/0 S0/1
S6 S0/1 -/-

14 / 29



State Encoding
States are stored by FFs
7 states, using 3 FFs

State assignment
q2q1q0 State

000 S0
001 S1
010 S6
011 S4
100 -
101 S2
110 S5
111 S3

State Next state output
q2q1q0 q+

2 q+
1 q+

0
Input Input

0 1 0 1
000 (S0) 001 101 1 0
001 (S1) 111 011 1 0
101 (S2) 011 011 0 1
111 (S3) 110 110 0 1
011 (S4) 110 010 1 0
110 (S5) 000 000 0 1
010 (S6) 000 - 1 -
100 (- ) - - - -

15 / 29



Simplify State Transaction Function

1 1 1 1
0 x 0 0
0 0 0 0
x x 1 1

00 01 11 10
00
01
11
10

q2q1

q0Bin

q+
0 = q′

1

0 1 0 1
0 x 0 1
0 0 1 1
x x 0 0

00 01 11 10
00
01
11
10

q2q1

q0Bin

q′
2 = q′

1q′
0Bin + q′

2q0B′
in + q2q1q0

0 0 1 1
0 x 1 1
0 0 1 1
x x 1 1

00 01 11 10
00
01
11
10

q2q1

q0Bin

q+
1 = q0

1 0 0 1
1 x 0 1
0 1 1 0
x x 1 0

00 01 11 10
00
01
11
10

q2q1

q0Bin

Bout = q′
2B′

in + q2Bin
16 / 29



Implementing BCD to Excess-3 Converter

Input/output Relation

0001Bin = 8 (BCD)LSBMSBExcess-3CodeconverterMSB Bout = 8 (Excess-3)1110 100000111011MSBLSBclock
Input-output bit stream in a BCD to Excess-3 serial code converter

Input/output Relation

0001Bin = 8 (BCD)LSBMSBExcess-3CodeconverterMSB Bout = 8 (Excess-3)1110 100000111011MSBLSBclock17 / 29



FSM Example: Serial-Line Code Converter

3 signals:
Clock
Handshaking signal
Data

Well-known encoding algorithms:
NRZ
NRZI: if input is 1, the previous output value is inversed while 0 input
keeps output unchanged
RZ: if input is 1, output is 1 during the first half cycle and 0 during the
second half cycle while 0 input produces 0 output
Manchester: if input is 0, output is 0 during the first half cycle and 1
during the second half cycle while 1 input produces 1 output during the
first half and 0 output during the second half

18 / 29



Serial Encoding Examples

Clock 2’s frequency is double clock 1’s frequency to implement the
NRZI, RZ, and Manchester encoding algorithms

19 / 29



Mealy FSM for Serial Encoding

The Manchester algorithm
Waiting state (S0)
Just receiving 1 state (S2)
Just receiving 0 state (S1)

S0 S1S2

1/0

1/1

0/1

0/0

state q1q0

S0 00
S1 01
S2 10

Next state/ output
State input

0 1
S0 S1/0 S2/1
S1 S0/1 -
S2 - S0/0

State Next state output
q1q0 q+

1 q+
0

Input Input
0 1 0 1

00 (S0) 01 10 0 1
01 (S1) 00 00 1 -
10 (S2) 00 00 - 0

20 / 29



Implementing the Mealy FSM

0 1
0 0
- -

0 0

0 1
00
01
11
10

q1q0

Bin

q+
1 = q′

1q′
0Bin

1 0
0 0
- -

0 0

0 1
00
01
11
10

q1q0

Bin

q+
0 = q′

1q′
0B′

in

0 1
1 1
- -

0 0

0 1
00
01
11
10

q1q0

Bin

Bout = q′
1q0 + q′

1Bin

21 / 29



Moore FSM for Serial Encoding

The Manchester Algorithm
S0: starting/second half of the cycle receiving 1, the output is 0
S1: first half of the cycle receiving 0, the output is 0
S2: second half of the cycle receiving 0, the output is 1
S3: first half of the cycle receiving 1, the output is 1

S0/0 S1/0

S2/1S3/1

11 00

0

1

State
Next state/ output

input
0 1

S0 S1/0 S3/1
S1 S2/1 -
S2 - S0/1
S3 S1/0 S3/0

State Next state output
q1q0 q+

1 q+
0

Input
0 1

00 (S0) 01 11 0
01 (S1) 10 - 0
11 (S3) - 00 1
10 (S2) 01 11 1

22 / 29



Implementing the Moore FSM

0 1
1 x
- 0
0 1

0 1
00
01
11
10

q1q0

Bin

q+
1 = q′

0Bin + q′
1q0

1 1
0 -
- 0
1 1

0 1
00
01
11
10

q1q0

Bin

q+
0 = q′

0

0 0
1 1

0 1
0
1

q0

Bin

Bout = q0

23 / 29



Simplify Equivalent States
Two states are equivalent:

Output and the next states are the same in all inputs (c1)
Can be combined together without any changed behavior (c2)

Reducing two equivalent states reduces hardware cost
Each FSM has one and only one simplest equivalent FSM

State
Next state output

Input Input
0 1 0 1

S0 S6 S3 0 0
S1 S1 S6 0 1
S2 S2 S5 0 1
S3 S7 S3 0 1
S4 S7 S2 0 0
S5 S7 S2 0 0
S6 S0 S1 0 0
S7 S4 S3 0 0

24 / 29



Simplify Equivalent States example

S0S6S1

S3

S7

S4

S5S2

0/0
1/0

1/1

0/0

1/1

0/0

1/1

0/0
1/0

0/0

0/0
1/0

1/0

0/0

0/0

State
Next state output

Input Input
0 1 0 1

S0 S6 S3 0 0
S1 S1 S6 0 1
S2 S2 S5 0 1
S3 S7 S3 0 1
S4 S7 S2 0 0
S5 S7 S2 0 0
S6 S0 S1 0 0
S7 S4 S3 0 0

25 / 29



Simplify Equivalent States Algorithm
Step 1: Find basic equivalent states (c1)

S0S6S1

S3

S7

S4

S5S2

0/0
1/0

1/1

0/0

1/1

0/0

1/1

0/0
1/0

0/0

0/0
1/0

1/0

0/0

0/0

S0S6S1

S3

S7

S4

S2

0/0
1/0

1/1

0/0

1/1

0/0

1/1

0/0
1/0

0/0

1/0

0/0

0/0

26 / 29



Simplify Equivalent States Algorithm

Step 2: Create a possible equivalent states table (c2)
Let impossible equivalent cells be empty
Fill conditions upon which two corresponding states can be equivalent

27 / 29



Simplify Equivalent States Algorithm

Step 3: Consider equivalent conditions of any two states, delete
corresponding cell if the cell contains any inequivalent couple

S3

S7

S4

S2

1/1

0/0

1/1

0/0
1/0

0/0

0/0

28 / 29


